Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging human infectious diseases and the links to global food production

Abstract

Infectious diseases are emerging globally at an unprecedented rate while global food demand is projected to increase sharply by 2100. Here, we synthesize the pathways by which projected agricultural expansion and intensification will influence human infectious diseases and how human infectious diseases might likewise affect food production and distribution. Feeding 11 billion people will require substantial increases in crop and animal production that will expand agricultural use of antibiotics, water, pesticides and fertilizer, and contact rates between humans and both wild and domestic animals, all with consequences for the emergence and spread of infectious agents. Indeed, our synthesis of the literature suggests that, since 1940, agricultural drivers were associated with >25% of all — and >50% of zoonotic — infectious diseases that emerged in humans, proportions that will likely increase as agriculture expands and intensifies. We identify agricultural and disease management and policy actions, and additional research, needed to address the public health challenge posed by feeding 11 billion people.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Some common relationships between agriculture and human health.
Fig. 2: Proposed effects of human population growth and associated increases in agricultural production on the risk of human infectious diseases.
Fig. 3: Projected increase in global human population and its expected effect on components of agriculture.
Fig. 4: Livestock pathogens and zoonoses.
Fig. 5: Effects of agricultural drivers on emerging infectious diseases (EIDs) and zoonotic EIDs of humans since 1940.

Similar content being viewed by others

References

  1. Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).

    CAS  Google Scholar 

  2. Roberts, L. Nigeria’s invisible crisis. Science 356, 18–23 (2017).

    CAS  Google Scholar 

  3. Sanchez, P. A. & Swaminathan, M. Hunger in Africa: the link between unhealthy people and unhealthy soils. Lancet 365, 442–444 (2005).

    Google Scholar 

  4. Black, R. E. et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371, 243–260 (2008).

    Google Scholar 

  5. Naylor, R. The Evolving Sphere of Food Security (Oxford Univ. Press, 2014).

  6. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    CAS  Google Scholar 

  7. Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    CAS  Google Scholar 

  8. Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. Lond. B 365, 2793–2807 (2010).

    Google Scholar 

  9. Matson, P. A., Parton, W. J., Power, A. G. & Swift, M. J. Agricultural intensification and ecosystem properties. Science 277, 504–509 (1997).

    CAS  Google Scholar 

  10. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    CAS  Google Scholar 

  11. Springmann, M. et al. Global and regional health effects of future food production under climate change: a modelling study. Lancet 387, 1937–1946 (2016).

    Google Scholar 

  12. Myers, S. S., Wessells, K. R., Kloog, I., Zanobetti, A. & Schwartz, J. Effect of increased concentrations of atmospheric carbon dioxide on the global threat of zinc deficiency: a modelling study. Lancet Glob. Health 3, e639–e645 (2015).

    Google Scholar 

  13. Myers, S. S., Wessells, K. R., Kloog, I., Zanobetti, A. & Schwartz, J. Rising atmospheric CO2 increases global threat of zinc deficiency. Lancet Glob. Health 3, e639–e645 (2015).

    Google Scholar 

  14. Golden, C. et al. Fall in fish catch threatens human health. Nature 534, 317–320 (2016).

    Google Scholar 

  15. de Benoist, B., McLean, E., Egll, I. & Cogswell, M. Worldwide Prevalence of Anaemia 1993–2005: WHO Global Database on Anaemia (WHO, 2008).

  16. The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food Security (FAO, 2017).

  17. Global Prevalence of Vitamin A Deficiency in Populations at Risk 1995–2005: WHO Global Database on Vitamin A Deficiency (WHO, 2009).

  18. World Population Prospects: 2017 Revision (United Nations, 2017); http://esa.un.org/unpd/wpp/

  19. Godfray, H. C. J. & Garnett, T. Food security and sustainable intensification. Phil. Trans. R. Soc. Lond. B 369, 20120273 (2014).

    Google Scholar 

  20. Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: 2012 Revision ESA Working Paper (FAO, 2012).

  21. How to Feed the World: Global Agriculture Towards 2050 (FAO, 2009); www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf

  22. Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).

    CAS  Google Scholar 

  23. Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).

    CAS  Google Scholar 

  24. Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095–2128 (2013).

    Google Scholar 

  25. Lustigman, S. et al. A research agenda for helminth diseases of humans: the problem of helminthiases. PLoS Negl. Trop. Dis. 6, e1582 (2012).

    Google Scholar 

  26. Pingali, P. L. & Roger, P. A. Impact of Pesticides on Farmer Health and the Rice Environment Vol. 7 (Springer Science & Business Media, 2012).

  27. Sheahan, M., Barrett, C. B. & Goldvale, C. Human health and pesticide use in sub‐Saharan Africa. Agric. Econ. 48, 27–41 (2017).

    Google Scholar 

  28. Dobson, A. & Foufopoulos, J. Emerging infectious pathogens of wildlife. Philos. Trans. R. Soc. Lond. B 356, 1001–1012 (2001).

    CAS  Google Scholar 

  29. Taylor, L. H., Latham, S. M. & Woolhouse, M. E. J. Risk factors for human disease emergence. Philos. Trans. R. Soc. Lond. B 356, 983–989 (2001).

    CAS  Google Scholar 

  30. Evenson, R. E. & Gollin, D. Assessing the impact of the Green Revolution, 1960 to 2000. Science 300, 758–762 (2003).

  31. Tilman, D. Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc. Natl Acad. Sci. USA 96, 5995–6000 (1999).

    CAS  Google Scholar 

  32. Civitello, D. J., Allman, B. E., Morozumi, C. & Rohr, J. R. Assessing the direct and indirect effects of food provisioning and nutrient enrichment on wildlife infectious disease dynamics. Phil. Trans. R. Soc. Lond. B 373, 20170101 (2018).

    Google Scholar 

  33. Lochmiller, R. L. & Deerenberg, C. Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88, 87–98 (2000).

    Google Scholar 

  34. Knutie, S. A., Wilkinson, C. L., Wu, Q. C., Ortega, C. N. & Rohr, J. R. Host resistance and tolerance of parasitic gut worms depend on resource availability. Oecologia 183, 1031–1040 (2017).

    Google Scholar 

  35. Young, S. L., Sherman, P. W., Lucks, J. B. & Pelto, G. H. Why on earth? Evaluating hypotheses about the physiological functions of human geophagy. Q. Rev. Biol. 86, 97–120 (2011).

    Google Scholar 

  36. Rohr, J. R., Raffel, T. R. & Hall, C. A. Developmental variation in resistance and tolerance in a multi-host-parasite system. Funct. Ecol. 24, 1110–1121 (2010).

    Google Scholar 

  37. Webster, D. Malaria kills one child every 30 seconds. J. Public Health Policy 22, 23–33 (2001).

    CAS  Google Scholar 

  38. Odone, A., Houben, R. M., White, R. G. & Lönnroth, K. The effect of diabetes and undernutrition trends on reaching 2035 global tuberculosis targets. Lancet Diabetes Endocrinol. 2, 754–764 (2014).

    Google Scholar 

  39. Gómez, M. I. et al. Post-green revolution food systems and the triple burden of malnutrition. Food Policy 42, 129–138 (2013).

    Google Scholar 

  40. Akpom, C. A. Schistosomiasis: nutritional implications. Rev. Infect. Dis. 4, 776–782 (1982).

    CAS  Google Scholar 

  41. Sears, B. F., Rohr, J. R., Allen, J. E. & Martin, L. B. The economy of inflammation: when is less more? Trends Parasitol. 27, 382–387 (2011).

    Google Scholar 

  42. Sazawal, S. et al. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet 367, 133–143 (2006).

    CAS  Google Scholar 

  43. Pinstrup-Andersen, P. & Shimokawa, S. in Rethinking Infrastructure for Development (eds Bourguignon, F. & Pleskovic, B.) 175–204 (World Bank, 2008).

  44. Christiaensen, L., Demery, L. & Kuhl, J. The (evolving) role of agriculture in poverty reduction — an empirical perspective. J. Dev. Econ. 96, 239–254 (2011).

    Google Scholar 

  45. Déglise, C., Suggs, L. S. & Odermatt, P. SMS for disease control in developing countries: a systematic review of mobile health applications. J. Telemed. Telecare 18, 273–281 (2012).

    Google Scholar 

  46. Fay, M., Leipziger, D., Wodon, Q. & Yepes, T. Achieving child-health-related Millennium Development Goals: the role of infrastructure. World Dev. 33, 1267–1284 (2005).

    Google Scholar 

  47. Bonds, M. H., Keenan, D. C., Rohani, P. & Sachs, J. D. Poverty trap formed by the ecology of infectious diseases. Proc. R. Soc. Lond. B 277, 1185–1192 (2010).

    Google Scholar 

  48. Ngonghala, C. N. et al. General ecological models for human subsistence, health and poverty. Nat. Ecol. Evol. 1, 1153–1159 (2017).

    Google Scholar 

  49. Hotez, P. J., Fenwick, A., Savioli, L. & Molyneux, D. H. Rescuing the bottom billion through control of neglected tropical diseases. Lancet 373, 1570–1575 (2009).

    Google Scholar 

  50. Carter, M. R. & Barrett, C. B. The economics of poverty traps and persistent poverty: an asset-based approach. J. Dev. Stud. 42, 178–199 (2006).

    Google Scholar 

  51. Barrett, C. B., Carter, M. R. & Chavas, J. The Economics of Poverty Traps (Univ. Chicago Press, 2019).

  52. Sokolow, S. H. et al. Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail-eating river prawns. Phil. Trans. R. Soc. Lond. B 372, 20160127 (2017).

    Google Scholar 

  53. Van Asselen, S., Verburg, P. H., Vermaat, J. E. & Janse, J. H. Drivers of wetland conversion: a global meta-analysis. PLoS ONE 8, e81292 (2013).

    Google Scholar 

  54. Tanaka, H. & Tsuji, M. From discovery to eradication of schistosomiasis in Japan: 1847–1996. Int. J. Parasitol. 27, 1465–1480 (1997).

    CAS  Google Scholar 

  55. Stapleton, D. H. Lessons of history? Anti-malaria strategies of the International Health Board and the Rockefeller Foundation from the 1920s to the era of DDT. Public Health Rep. 119, 206–215 (2004).

    Google Scholar 

  56. Amerasinghe, F. & Indrajith, N. Postirrigation breeding patterns of surface water mosquitoes in the Mahaweli Project, Sri Lanka, and comparisons with preceding developmental phases. J. Med. Entomol. 31, 516–523 (1994).

    CAS  Google Scholar 

  57. Harb, M. et al. The resurgence of lymphatic filariasis in the Nile delta. Bull. World Health Organ. 71, 49–54 (1993).

    CAS  Google Scholar 

  58. Tyagi, B. & Chaudhary, R. Outbreak offalciparummalaria in the Thar Desert (India), with particular emphasis on physiographic changes brought about by extensive canalization and their impact on vector density and dissemination. J. Arid Environ. 36, 541–555 (1997).

    Google Scholar 

  59. Ghebreyesus, T. A. et al. Incidence of malaria among children living near dams in northern Ethiopia: community based incidence survey. BMJ 319, 663–666 (1999).

    CAS  Google Scholar 

  60. Steinmann, P., Keiser, J., Bos, R., Tanner, M. & Utzinger, J. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect. Dis. 6, 411–425 (2006).

    Google Scholar 

  61. Sokolow, S. H. et al. Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail-eating river prawns. Philos. Trans. R. Soc. Lond. B 372, 20160127 (2017).

    Google Scholar 

  62. Jobin, W. Dams and Disease: Ecological Design and Health Impacts of Large Dams, Canals and Irrigation Systems (CRC Press, 1999).

  63. D’Odorico, P., Carr, J. A., Laio, F., Ridolfi, L. & Vandoni, S. Feeding humanity through global food trade. Earths Future 2, 458–469 (2014).

    Google Scholar 

  64. Eisenberg, J. N. et al. Environmental change and infectious disease: how new roads affect the transmission of diarrheal pathogens in rural Ecuador. Proc. Natl Acad. Sci. USA 103, 19460–19465 (2006).

    CAS  Google Scholar 

  65. Estimates of Foodborne Illness in the United States (CDC, 2011); https://www.cdc.gov/foodborneburden/index.html

  66. Patz, J. A. et al. Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ. Health Perspect. 112, 1092–1098 (2004).

    Google Scholar 

  67. Hosseini, P., Sokolow, S. H., Vandegrift, K. J., Kilpatrick, A. M. & Daszak, P. Predictive power of air travel and socio-economic data for early pandemic spread. PLoS ONE 5, e12763 (2010).

    Google Scholar 

  68. Vandegrift, K. J., Sokolow, S. H., Daszak, P. & Kilpatrick, A. M. in Year in Ecology and Conservation Biology 2010 (eds Ostfeld, R. S. & Schlesinger, W. H.) 113–128 (Wiley-Blackwell, 2010).

  69. Swinnen, J. F. Global Supply Chains, Standards and The Poor: How the Globalization of Food Systems and Standards Affects Rural Development and Poverty (Cabi, 2007).

  70. Reardon, T., Barrett, C. B., Berdegué, J. A. & Swinnen, J. F. Agrifood industry transformation and small farmers in developing countries. World Dev. 37, 1717–1727 (2009).

    Google Scholar 

  71. Foot and mouth disease. DEFRA http://footandmouth.fera.defra.gov.uk/index.cfm (2004).

  72. Cabello, F. C. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ. Microbiol. 8, 1137–1144 (2006).

    CAS  Google Scholar 

  73. Naylor, R. & Burke, M. Aquaculture and ocean resources: raising tigers of the sea. Annu. Rev. Environ. Resour. 30, 185–218 (2005).

    Google Scholar 

  74. Gorbach, S. L. Antimicrobial use in animal feed — time to stop. N. Engl. J. Med. 345, 1202–1203 (2001).

    CAS  Google Scholar 

  75. Van Boeckel, T. P. et al. Reducing antimicrobial use in food animals. Science 357, 1350–1352 (2017).

    Google Scholar 

  76. Silbergeld, E. K., Graham, J. & Price, L. B. Industrial food animal production, antimicrobial resistance, and human health. Annu. Rev. Public Health 29, 151–169 (2008).

    Google Scholar 

  77. Geerts, S. & Gryseels, B. Drug resistance in human helminths: current situation and lessons from livestock. Clin. Microbiol. Rev. 13, 207–222 (2000).

    CAS  Google Scholar 

  78. Hemingway, J., Hawkes, N. J., McCarroll, L. & Ranson, H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34, 653–665 (2004).

    CAS  Google Scholar 

  79. Rohr, J. R., Raffel, T. R., Sessions, S. K. & Hudson, P. J. Understanding the net effects of pesticides on amphibian trematode infections. Ecol. Appl. 18, 1743–1753 (2008).

    Google Scholar 

  80. Rohr, J. R. et al. Agrochemicals increase trematode infections in a declining amphibian species. Nature 455, 1235–1239 (2008).

    CAS  Google Scholar 

  81. Rohr, J. R. et al. Predator diversity, intraguild predation, and indirect effects drive parasite transmission. Proc. Natl Acad. Sci. USA 112, 3008–3013 (2015).

    CAS  Google Scholar 

  82. Voccia, I., Blakley, B., Brousseau, P. & Fournier, M. Immunotoxicity of pesticides: a review. Toxicol. Ind. Health 15, 119–132 (1999).

    CAS  Google Scholar 

  83. Banerjee, B. D. The influence of various factors on immune toxicity assessment of pesticide chemicals. Toxicol. Lett. 107, 21–31 (1999).

    CAS  Google Scholar 

  84. Martin, L. B., Hopkins, W. A., Mydlarz, L. D. & Rohr, J. R. in Year in Ecology and Conservation Biology 2010 (eds Ostfeld, R. S. & Schlesinger, W. H.) 129–148 (Wiley-Blackwell, 2010).

  85. Rohr, J. R. & McCoy, K. A. A qualitative meta-analysis reveals consistent effects of atrazine on freshwater fish and amphibians. Environ. Health Perspect. 18, 20–32 (2010).

    Google Scholar 

  86. Rohr, J. R. et al. Early-life exposure to a herbicide has enduring effects on pathogen-induced mortality. Proc. R. Soc. Lond. B 280, 20131502 (2013).

    Google Scholar 

  87. Rohr, J. R., Kerby, J. L. & Sih, A. Community ecology as a framework for predicting contaminant effects. Trends Ecol. Evol. 21, 606–613 (2006).

    Google Scholar 

  88. Clements, W. H. & Rohr, J. R. Community responses to contaminants: using basic ecological principles to predict ecotoxicological effects. Environ. Toxicol. Chem. 28, 1789–1800 (2009).

    CAS  Google Scholar 

  89. Lafferty, K. D. & Holt, R. D. How should environmental stress affect the population dynamics of disease? Ecol. Lett. 6, 654–664 (2003).

    Google Scholar 

  90. Jayawardena, U. A., Rohr, J. R., Navaratne, A. N., Amerasinghe, P. H. & Rajakaruna, R. S. Combined effects of pesticides and trematode infections on hourglass tree frog Polypedates cruciger. EcoHealth 13, 111–122 (2016).

    Google Scholar 

  91. Walker, S. P. et al. Child development: risk factors for adverse outcomes in developing countries. Lancet 369, 145–157 (2007).

    Google Scholar 

  92. Johnson, P. T. J. et al. Linking environmental nutrient enrichment and disease emergence in humans and wildlife. Ecol. Appl. 20, 16–29 (2010).

    Google Scholar 

  93. McKenzie, V. J. & Townsend, A. R. Parasitic and infectious disease responses to changing global nutrient cycles. EcoHealth 4, 384–396 (2007).

    Google Scholar 

  94. Green, R. E., Cornell, S. J., Scharlemann, J. P. & Balmford, A. Farming and the fate of wild nature. Science 307, 550–555 (2005).

    CAS  Google Scholar 

  95. Crist, E., Mora, C. & Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 356, 260–264 (2017).

    CAS  Google Scholar 

  96. Despommier, D., Ellis, B. R. & Wilcox, B. A. The role of ecotones in emerging infectious diseases. EcoHealth 3, 281–289 (2006).

    Google Scholar 

  97. Borremans, B., Faust, C. L., Manlove, K., Sokolow, S. H. & Lloyd-Smith, J. Cross-species pathogen spillover across ecosystem boundaries: mechanisms and theory. Philos. Trans. R. Soc. Lond. B https://doi.org/10.1098/rstb.2018.0344 (in the press).

  98. Jones, B. A. et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl Acad. Sci. USA 110, 8399–8404 (2013).

    CAS  Google Scholar 

  99. Cohen, J. M. et al. Spatial scale modulates the strength of ecological processes driving disease distributions. Proc. Natl Acad. Sci. USA 113, E3359–E3364 (2016).

    CAS  Google Scholar 

  100. Dobson, A. et al. Sacred cows and sympathetic squirrels: the importance of biological diversity to human health. PLoS Med. 3, 714–718 (2006).

    Google Scholar 

  101. Civitello, D. J. et al. Biodiversity inhibits parasites: broad evidence for the dilution effect. Proc. Natl Acad. Sci. USA 112, 8667–8671 (2015).

    CAS  Google Scholar 

  102. Myers, S. S. et al. Human health impacts of ecosystem alteration. Proc. Natl Acad. Sci. USA 110, 18753–18760 (2013).

    CAS  Google Scholar 

  103. Pienkowski, T., Dickens, B. L., Sun, H. & Carrasco, L. R. Empirical evidence of the public health benefits of tropical forest conservation in Cambodia: a generalised linear mixed-effects model analysis. Lancet Planet. Health 1, e180–e187 (2017).

    Google Scholar 

  104. Berazneva, J. & Byker, T. S. Does forest loss increase human disease? Evidence from Nigeria. Am. Econ. Rev. 107, 516–521 (2017).

    Google Scholar 

  105. Herrera, D. et al. Upstream watershed condition predicts rural children's health across 35 developing countries. Nat. Commun. 8, 811 (2017).

    Google Scholar 

  106. Barrett, C. B., Travis, A. J. & Dasgupta, P. On biodiversity conservation and poverty traps. Proc. Natl Acad. Sci. USA 108, 13907–13912 (2011).

    CAS  Google Scholar 

  107. Barrett, C. B. & Bevis, L. E. The self-reinforcing feedback between low soil fertility and chronic poverty. Nat. Geosci. 8, 907–912 (2015).

    CAS  Google Scholar 

  108. Achard, F. et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Change Biol. 20, 2540–2554 (2014).

    Google Scholar 

  109. Despommier, D., Griffin, D., Gwadz, R. G., Hotez, P. & Knirsch, C. Parasitic Diseases 6th edn (Parasites Without Borders, 2018).

  110. Parker, I. M. et al. Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520, 542–544 (2015).

    CAS  Google Scholar 

  111. Lenski, R. E. & May, R. M. The evolution of virulence in parasites and pathogens: reconciliation between two competing hypotheses. J. Theor. Biol. 169, 253–265 (1994).

    CAS  Google Scholar 

  112. Lloyd-Smith, J. O. et al. Epidemic dynamics at the human-animal interface. Science 326, 1362–1367 (2009).

    CAS  Google Scholar 

  113. Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502–510 (2017).

    CAS  Google Scholar 

  114. Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    CAS  Google Scholar 

  115. Wiethoelter, A. K., Beltrán-Alcrudo, D., Kock, R. & Mor, S. M. Global trends in infectious diseases at the wildlife–livestock interface. Proc. Natl Acad. Sci. USA 112, 9662–9667 (2015).

    CAS  Google Scholar 

  116. Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).

    CAS  Google Scholar 

  117. Grace, D. et al. Zoonoses — From Panic to Planning IDS Rapid Response Briefing (Institute of Development Studies, 2013).

  118. Landers, T. F., Cohen, B., Wittum, T. E. & Larson, E. L. A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Rep. 127, 4–22 (2012).

    Google Scholar 

  119. Worobey, M., Han, G.-Z. & Rambaut, A. A synchronized global sweep of the internal genes of modern avian influenza virus. Nature 508, 254–257 (2014).

    CAS  Google Scholar 

  120. Pulliam, J. R. et al. Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. J. R. Soc. Interface 9, 89–101 (2011).

    Google Scholar 

  121. Alexander, D. J. A review of avian influenza in different bird species. Vet. Microbiol. 74, 3–13 (2000).

    CAS  Google Scholar 

  122. Huyse, T. et al. Bidirectional introgressive hybridization between a cattle and human schistosome species. PLoS Pathog. 5, e1000571 (2009).

    Google Scholar 

  123. Brashares, J. S., Golden, C. D., Weinbaum, K. Z., Barrett, C. B. & Okello, G. V. Economic and geographic drivers of wildlife consumption in rural Africa. Proc. Natl Acad. Sci. USA 108, 13931–13936 (2011).

    CAS  Google Scholar 

  124. Keesing, F. & Young, T. P. Cascading consequences of the loss of large mammals in an African savanna. Bioscience 64, 487–495 (2014).

    Google Scholar 

  125. Allan, J. D. et al. Overfishing of inland waters. Bioscience 55, 1041–1051 (2005).

    Google Scholar 

  126. Alsan, M. The effect of the tsetse fly on African development. Am. Econ. Rev. 105, 382–410 (2015).

    Google Scholar 

  127. Yamano, T. & Jayne, T. S. Measuring the impacts of working-age adult mortality on small-scale farm households in Kenya. World Dev. 32, 91–119 (2004).

    Google Scholar 

  128. Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).

    CAS  Google Scholar 

  129. Thornton, P. K. Livestock production: recent trends, future prospects. Philos. Trans. R. Soc. Lond. B 365, 2853–2867 (2010).

    Google Scholar 

  130. Ozier, O. Exploiting externalities to estimate the long-term effects of early childhood deworming. Am. Econ. J. Appl. Econ. 10, 235–262 (2018).

    Google Scholar 

  131. Raffel, T. R. et al. Disease and thermal acclimation in a more variable and unpredictable climate. Nat. Clim. Change 3, 146–151 (2013).

    Google Scholar 

  132. Rohr, J. R. et al. Frontiers in climate change-disease research. Trends Ecol. Evol. 26, 270–277 (2011).

    Google Scholar 

  133. Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).

    CAS  Google Scholar 

  134. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    CAS  Google Scholar 

  135. Despommier, D. The Vertical Farm: Feeding the World in the 21st Century (Macmillan, 2010).

  136. Barro, R. J. Democracy and growth. J. Econ. Growth 1, 1–27 (1996).

    Google Scholar 

  137. Staley, Z. R., Rohr, J. R., Senkbeil, J. K. & Harwood, V. J. Agrochemicals indirectly increase survival of E. coli O157:H7 and indicator bacteria by reducing ecosystem services. Ecol. Appl. 24, 1945–1953 (2014).

    Google Scholar 

  138. Staley, Z. R., Senkbeil, J. K., Rohr, J. R. & Harwood, V. J. Lack of direct effects of agrochemicals on zoonotic pathogens and fecal indicator bacteria. Appl. Environ. Microbiol. 78, 8146–8150 (2012).

    CAS  Google Scholar 

  139. Halstead, N. T. et al. Agrochemicals increase risk of human schistosomiasis by supporting higher densities of intermediate hosts. Nat. Commun. 9, 837 (2018).

    Google Scholar 

  140. Hoover, C. M. et al. Modelled effects of prawn aquaculture on poverty alleviation and schistosomiasis control. Nat. Sustain. https://doi.org/10.1038/s41893-019-0301-7 (2019).

  141. Beltran, S., Cézilly, F. & Boissier, J. Genetic dissimilarity between mates, but not male heterozygosity, influences divorce in schistosomes. PLoS ONE 3, e3328 (2008).

    Google Scholar 

  142. Garchitorena, A. et al. Disease ecology, health and the environment: a framework to account for ecological and socio-economic drivers in the control of neglected tropical diseases. Philos. Trans. R. Soc. Lond. B 372, 20160128 (2017).

    Google Scholar 

  143. Baeza, A., Santos-Vega, M., Dobson, A. P. & Pascual, M. The rise and fall of malaria under land-use change in frontier regions. Nat. Ecol. Evol. 1, 0108 (2017).

    Google Scholar 

Download references

Acknowledgements

Funds were provided by grants to J.R.R. from the National Science Foundation (EF-1241889, DEB-1518681, IOS-1754868), the National Institutes of Health (R01GM109499, R01TW010286-01), the US Department of Agriculture (2009-35102-0543) and the US Environmental Protection Agency (CAREER 83518801). G.A.D. and S.H.S. were supported by National Science Foundation (CNH grant no. 1414102), NIH grants (R01TW010286-01) the Bill and Melinda Gates Foundation, Stanford GDP SEED (grant no. 1183573-100-GDPAO) and the SNAP-NCEAS-supported working group ‘Ecological levers for health: advancing a priority agenda for Disease Ecology and Planetary Health in the 21st century’. J.V.R. was supported by the National Science Foundation Water, Sustainability, and Climate program (awards 1360330 and 1646708), the National Institutes of Health (R01AI125842 and R01TW010286), and the University of California Multicampus Research Programs and Initiatives (award # 17-446315). M.E.C. was funded by National Science Foundation (DEB-1413925 and 1654609) and UMN’s CVM Research Office Ag Experiment Station General Ag Research Funds. We thank K. Marx for contributing the artwork in Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

J.R.R. developed the idea and wrote most of the paper. Figure 1 was developed by S.H.S. and G.A.D., Figs. 2 and 4 were developed by J.R.R., Fig. 3 was developed by K.H.N. and B.D., Fig. 5 was developed by D.J.C., M.E.C. and R.S.O., and Box 1 was developed by D.J.C., M.E.C. and J.V.R. All authors substantially contributed ideas, revisions and edits.

Corresponding author

Correspondence to Jason R. Rohr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods and Supplementary Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohr, J.R., Barrett, C.B., Civitello, D.J. et al. Emerging human infectious diseases and the links to global food production. Nat Sustain 2, 445–456 (2019). https://doi.org/10.1038/s41893-019-0293-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-019-0293-3

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene