Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular engineering of renewable cellulose biopolymers for solid-state battery electrolytes

Abstract

As the most abundant and renewable biopolymer, cellulose has found applications in a range of fields such as healthcare, packaging, electronics and environmental remediation, contributing to the transition towards sustainability. Here we apply a green and scalable process transforming cellulose to a robust electrolyte exhibiting lithium (Li) ion conductivity of 1.09 × 10−3 S cm−1 with a transference number of 0.81 and mechanical strength of 12 MPa. Our process takes advantage of the rich hydroxyl groups in the cellulose which are replaced by phthalic anhydride through an esterification reaction to form cellulose phthalate (CP). Combined experimental and theoretical analyses reveal that the introduction of phthalate groups is essential to not only ensure effective multi-oxygen interaction with Li ions to create fast ion transportation channels, but also facilitates the intermolecular hydrogen bond responsible for the impressive mechanical properties. The CP biopolymer film is even compatible with most commercial cathode materials, and our solid-state Li/CP/LiFePO4 cells show better performance and notably good stability over 1,000 cycles than that of a baseline Li-ion cell with a flammable organic liquid electrolyte. Our study unlocks the enormous potential of cellulose utilization in batteries and opens an avenue for the development of abundant and sustainable solid-state electrolytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram for the fabrication of CP-SSE.
Fig. 2: Characterizations of cellulose derivatives and SSEs.
Fig. 3: Electrochemical analysis of cellulose derivative SSEs.
Fig. 4: Li symmetric cells operated at 25 °C.
Fig. 5: Full cells at 25 °C.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the Article and its Supplementary Information file. Should any raw data files be needed in another format, they are available from the corresponding authors upon reasonable request.

Code availability

The input files for ORCA, VASP, Chargemol, LAMMPS, CHGNet and ASE used in this study are available from the corresponding authors by request. All the codes used are either commercial or open source and can be accessed through their homepages.

References

  1. Li, T. et al. Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56 (2021).

    CAS  Google Scholar 

  2. Klemm, D., Heublein, B., Fink, H.-P. & Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005).

    CAS  Google Scholar 

  3. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    CAS  Google Scholar 

  4. Prakash, P. et al. A soft co-crystalline solid electrolyte for lithium-ion batteries. Nat. Mater. 22, 627–635 (2023).

    CAS  Google Scholar 

  5. Zahiri, B. et al. Revealing the role of the cathode–electrolyte interface on solid-state batteries. Nat. Mater. 20, 1392–1400 (2021).

    CAS  Google Scholar 

  6. Christie, A. M., Lilley, S. J., Staunton, E., Andreev, Y. G. & Bruce, P. G. Increasing the conductivity of crystalline polymer electrolytes. Nature 433, 50–53 (2005).

    CAS  Google Scholar 

  7. Khurana, R., Schaefer, J. L., Archer, L. A. & Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014).

    CAS  Google Scholar 

  8. Dixit, M. B. et al. Polymorphism of garnet solid electrolytes and its implications for grain-level chemo-mechanics. Nat. Mater. 21, 1298–1305 (2022).

    CAS  Google Scholar 

  9. Zhang, Q. et al. Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 31, 1901131 (2019).

    CAS  Google Scholar 

  10. Wang, Z. et al. Why cellulose-based electrochemical energy storage devices? Adv. Mater. 33, 2000892 (2021).

    CAS  Google Scholar 

  11. Himmel, M. E. et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315, 804–807 (2007).

    CAS  Google Scholar 

  12. Kubát, J. & Pattyranie, C. Transition in cellulose in the vicinity of −30 °C. Nature 215, 390–391 (1967).

    Google Scholar 

  13. Yang, C. et al. Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598, 590–596 (2021).

    Google Scholar 

  14. Cao, Y. et al. Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem. Eng. J. 147, 13–21 (2009).

    CAS  Google Scholar 

  15. Marson, G. A. & El Seoud, O. A. Cellulose dissolution in lithium chloride/N, N-dimethylacetamide solvent system: relevance of kinetics of decrystallization to cellulose derivatization under homogeneous solution conditions. J. Polym. Sci. Pol. Chem. 37, 3738–3744 (1999).

    CAS  Google Scholar 

  16. Wu, J. et al. Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5, 266–268 (2004).

    CAS  Google Scholar 

  17. Zhang, J. et al. Homogeneous esterification of cellulose in room temperature ionic liquids. Polym. Int. 64, 963–970 (2015).

    CAS  Google Scholar 

  18. Moon, R. J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011).

    CAS  Google Scholar 

  19. Chen, F., Wang, X., Armand, M. & Forsyth, M. Cationic polymer-in-salt electrolytes for fast metal ion conduction and solid-state battery aplications. Nat. Mater. 21, 1175–1182 (2022).

    CAS  Google Scholar 

  20. Zhao, Y. et al. Design strategies for polymer electrolytes with ether and carbonate groups for solid-state lithium metal batteries. Chem. Mater. 32, 6811–6830 (2020).

    CAS  Google Scholar 

  21. Liang, Z., Cabarcos, O. M., Allara, D. L. & Wang, Q. Hydrogen-bonding-directed layer-by-layer assembly of conjugated polymers. Adv. Mater. 16, 823–827 (2004).

    CAS  Google Scholar 

  22. Wu, Y., Wang, S., Li, H., Chen, L. & Wu, F. Progress in thermal stability of all-solid-state-Li-ion-batteries. InfoMat 3, 827–853 (2021).

    CAS  Google Scholar 

  23. Yang, X. et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal –OH group? Energ. Environ. Sci. 13, 1318–1325 (2020).

    CAS  Google Scholar 

  24. Wu, N. et al. Fast Li+ conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte. J. Am. Chem. Soc. 142, 2497–2505 (2020).

    CAS  Google Scholar 

  25. Xu, B. et al. Interfacial chemistry enables stable cycling of all-solid-state li metal batteries at high current densities. J. Am. Chem. Soc. 143, 6542–6550 (2021).

    CAS  Google Scholar 

  26. Xiao, P. et al. Synthesis, characterization and properties of novel cellulose derivatives containing phosphorus: cellulose diphenyl phosphate and its mixed esters. Cellulose 21, 2369–2378 (2014).

    CAS  Google Scholar 

  27. Lin, Z. et al. A wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery. Nano Energy 73, 104786 (2020).

    CAS  Google Scholar 

  28. Liu, Y. A.-O. et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375, 739–745 (2022).

    CAS  Google Scholar 

  29. Mong, A. L. et al. Tough and flexible, super ion-conductive electrolyte membranes for lithium-based secondary battery applications. Adv. Funct. Mater. 31, 2008586 (2021).

    CAS  Google Scholar 

  30. Su, Y. et al. Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries. Nat. Commun. 13, 4181 (2022).

    CAS  Google Scholar 

  31. He, X., Larson, J. M., Bechtel, H. A. & Kostecki, R. In situ infrared nanospectroscopy of the local processes at the Li/polymer electrolyte interface. Nat. Commun. 13, 1398 (2022).

    CAS  Google Scholar 

  32. Zhou, Q., Ma, J., Dong, S., Li, X. & Cui, G. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31, 1902029 (2019).

    CAS  Google Scholar 

  33. Peng, Z. et al. High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive. Adv. Funct. Mater. 30, 2001285 (2020).

    CAS  Google Scholar 

  34. Zhang, J. et al. Synthesis of cellulose benzoates under homogeneous conditions in an ionic liquid. Cellulose 16, 299–308 (2009).

    CAS  Google Scholar 

  35. Goodlett, V. W., Dougherty, J. T. & Patton, H. W. Characterization of cellulose acetates by nuclear magnetic resonance. J. Polym. Sci. A 9, 155–161 (1971).

    CAS  Google Scholar 

  36. Vijayakumar, M., Emery, J., Bohnke, O., Vold, R. L. & Hoatson, G. L. 7Li NMR analysis on perovskite structured Li0.15La0.28TaO3. Solid State Ion. 177, 1673–1676 (2006).

    CAS  Google Scholar 

  37. Evans, J., Vincent, C. A. & Bruce, P. G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324–2328 (1987).

    CAS  Google Scholar 

  38. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  39. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 136, B864–B871 (1964).

    Google Scholar 

  40. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Google Scholar 

  41. Manz, T. A. & Limas, N. G. Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology. RSC Adv. 6, 47771–47801 (2016).

    CAS  Google Scholar 

  42. Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 152, 224108 (2020).

    CAS  Google Scholar 

  43. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Google Scholar 

  44. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS  Google Scholar 

  45. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    CAS  Google Scholar 

  46. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Google Scholar 

  47. Thompson, A. P. et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    CAS  Google Scholar 

  48. Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 5, 1031–1041 (2023).

    Google Scholar 

  49. Larsen, A. H. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Mat. 29, 273002 (2017).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos 22025507 and 21931012), the Key Research Program of Frontier Sciences, CAS (ZDBS-LYSLH020), the Beijing National Laboratory for Molecular Sciences (BNLMS-CXXM-202010), the RGC General Research Fund (grant no. 17309620), Seed Fund of the University of Hong Kong (project code: 2201101550) and Hong Kong Quantum AI Lab Limited, Air @ InnoHK of Hong Kong Government. We thank Q. Li, A. Guan, N. Wu and J. Xiang from the Center for Physiochemical Analysis and Measurement in the Institute of Chemistry (CAS) for the NMR test. The authors also thank N. Grundish for polishing the manuscript to improve its readability.

Author information

Authors and Affiliations

Authors

Contributions

J.L. synthesized and characterized the cellulose-based electrolytes; Z.H., S.C. and G.H.C. carried out the theoretical analysis and the related discussions; S.Z., H.Z. and S.G. participated in the test and discussion of the electrochemical characterizations; G.Z and Z.P. performed the NMR characterization; Y.Q. and Y.L. contributed to the design of cellulose-based electrolytes; A.-M.C. supervised the project; and Y.L., Y.Q., J.L. and A.-M.C. wrote the manuscript. All authors commented on the manuscript.

Corresponding authors

Correspondence to Yan Qiao, Yutao Li or An-Min Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Seung Woo Lee, Chunpeng Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, discussion and Tables 1–5.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Hu, Z., Zhang, S. et al. Molecular engineering of renewable cellulose biopolymers for solid-state battery electrolytes. Nat Sustain 7, 1481–1491 (2024). https://doi.org/10.1038/s41893-024-01414-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-024-01414-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research