Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Delta sustainability from the Holocene to the Anthropocene and envisioning the future

Abstract

River deltas offer numerous ecosystem services and host an estimated global population of 350 million to more than 500 million inhabitants in over 100 countries. To maintain their sustainability into the future, deltas need to withstand sea-level rise from global warming, but human pressures and diminishing sediment supplies are exacerbating their vulnerability. In this Review, we show how deltas have served as environmental incubators for societal development over the past 7,000 years, and how this tightly interlocked relationship now poses challenges to deltas globally. Without climate stabilization, the sustainability of populous low-to-mid-latitude deltas will be difficult to maintain, probably terminating the delta–human relationship that we know today.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simplified sketch of a river delta.
Fig. 2: Anthropocene delta demography and land changes.
Fig. 3: Human intersection with delta geomorphological development over the past 7,000 years in the wake of stabilization of the postglacial SLR.
Fig. 4: Coordinated river and delta planning and management strategies to reduce vulnerability and maintain delta sustainability.
Fig. 5: SLR and delta sustainability.

Similar content being viewed by others

References

  1. Brondizio, E. S. et al. Catalyzing action towards the sustainability of deltas. Curr. Opin. Environ. Sustain. 19, 182–194 (2016).

    Google Scholar 

  2. Loucks, D. P. Developed river deltas: are they sustainable? Environ. Res. Lett. 14, 113004 (2019).

    Google Scholar 

  3. Schmitt, R. J. P. & Minderhoud, P. Data, knowledge, and modeling challenges for science-informed management of river deltas. One Earth 6, 216–235 (2023). Review of knowledge and data needed to better promote sustainable delta management.

    Google Scholar 

  4. Scown, M. W. et al. Global change scenarios in coastal river deltas and their sustainable development implications. Glob. Environ. Change 82, 102736 (2023). Scenarios of delta change in the near future and implications for delta sustainability.

    Google Scholar 

  5. Chan, F. K. S. et al. Building resilience in Asian mega-deltas. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-024-00561-x (2024). Review of challenges and transferable lessons among five Asian megadeltas to enhance resilience.

  6. Cremin, E. et al. Causes and consequences of tipping points in river delta social–ecological systems. Ambio https://doi.org/10.1007/s13280-023-01978-2 (2024).

  7. Edmonds, D. A., Caldwell, R. L., Brondizio, E. S. & Siani, S. M. O. Coastal flooding will disproportionately impact people on river deltas. Nat. Commun. 11, 4741 (2020). Global analysis of the potential impacts of flooding from sea-level rise on delta populations.

    CAS  Google Scholar 

  8. Nicholls, R. J. et al. (eds) Deltas in the Anthropocene (Springer, 2020).

  9. Syvitski, J. et al. Large deltas, small deltas: toward a more rigorous understanding of coastal marine deltas. Glob. Planet. Change 218, 103958 (2022).

    Google Scholar 

  10. Hauer, M. E. et al. Sea-level rise and human migration. Nat. Rev. Earth Environ. 1, 28–39 (2020). Analysis of drivers and determinants of human migration to coasts subject to sea-level rise.

    Google Scholar 

  11. Wallenhurst, N. & Wulf, C. (eds) Handbook of the Anthropocene: Humans between Heritage and Future (Springer, 2020). Exhaustive analysis of the multifaceted Anthropocene from all angles.

  12. Syvitski, J. et al. Extraordinary human energy consumption and resultant geological impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch. Commun. Earth Environ. 1, 32 (2020).

    Google Scholar 

  13. Witze, A. Geologists reject the Anthropocene as Earth’s new epoch — after 15 years of debate. Nature 627, 249–250 (2024).

    CAS  Google Scholar 

  14. Nicholls, R. J. et al. A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nat. Clim. Change 11, 338–342 (2021). Global analysis of coastal and delta exposure to flooding from sea-level rise and subsidence.

    Google Scholar 

  15. McGranahan, G., Balk, D., Colenbrander, S., Engin, H. & MacManus, K. Is rapid urbanization of low-elevation deltas undermining adaptation to climate change? A global review. Environ. Urban. 35, 527–559 (2023). Global review of obstacles to climate change adaptation due to rapid delta urbanization.

    Google Scholar 

  16. Santos, M. J. & Dekker, S. C. Locked-in and living delta pathways in the Anthropocene. Sci. Rep. 10, 19598 (2020). Analysis of the intertwined Anthropocene relationship between many deltas and humans.

    CAS  Google Scholar 

  17. Day, J. W. et al. Approaches to defining deltaic sustainability in the 21st century. Estuar. Coast. Shelf Sci. 183, 275–291 (2016).

    Google Scholar 

  18. Syvitski, J. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).

    CAS  Google Scholar 

  19. Day, J. W., Gunn, J. D., Folan, W. J., Yáñez-Arancibia, A. & Horton, B. P. The influence of enhanced post-glacial coastal margin productivity on the emergence of complex societies. J. Isl. Coast. Archaeol. 7, 23–52 (2012).

    Google Scholar 

  20. Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).

    CAS  Google Scholar 

  21. Osland, M. J. et al. Migration and transformation of coastal wetlands in response to rising seas. Sci. Adv. 8, eabo5174 (2022).

    Google Scholar 

  22. Stanley, D. J. & Warne, A. G. Holocene sea-level change and early human utilization of deltas. GSA Today 7, 1–7 (1997). An early analysis of the first links between deltas and human encroachment globally.

    Google Scholar 

  23. Pope, K. O. et al. Origin and environmental setting of ancient agriculture in the lowlands of Mesoamerica. Science 292, 1370–1373 (2001).

    CAS  Google Scholar 

  24. Zong, Y. et al. Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China. Nature 449, 459–462 (2007).

    CAS  Google Scholar 

  25. Scott, J. C. Against the Grain: A Deep History of the Earliest States (Yale Univ. Press, 2017).

  26. Stanley, D. J. & Warne, A. G. Sea level and initiation of Predynastic culture in the Nile delta. Nature 363, 435–438 (1993).

    Google Scholar 

  27. Chen, Z., Zong, Y., Wang, Z., Wang, H. & Chen, J. Migration patterns of Neolithic settlements on the abandoned Yellow and Yangtze River deltas of China. Quat. Res. 70, 301–314 (2008).

    Google Scholar 

  28. Wang, Z., Zhuang, C., Saito, Y., Chen, J. & Zhan, Q. Early mid-Holocene sea-level change and coastal environmental response on the southern Yangtze delta plain, China: implications for the rise of Neolithic culture. Quat. Sci. Rev. 35, 51–62 (2012).

    Google Scholar 

  29. Deng, L. J. et al. New archaeobotanical evidence reveals synchronous rice domestication 7600 years ago on south Hangzhou Bay coast, eastern China. Anthropocene 33, 100280 (2021).

    Google Scholar 

  30. Louwe Kooijmans, L. P. et al. (eds) The Prehistory of the Netherlands (Amsterdam Univ. Press, 2005).

  31. Sheisha, H. et al. Feeding the pyramid builders: early agriculture at Giza in Egypt. Quat. Sci. Rev. 312, 108172 (2023).

    Google Scholar 

  32. Sheisha, H. et al. Nile waterscapes facilitated the construction of the Giza pyramids during the 3rd millennium BCE. Proc. Natl Acad. Sci. USA 119, e2202530119 (2022).

    CAS  Google Scholar 

  33. Ghoneim, E. et al. The Egyptian pyramid chain was built along the now abandoned Ahramat Nile Branch. Commun. Earth Environ. 5, 233 (2024).

    Google Scholar 

  34. Morozova, G. A review of Holocene avulsions of the Tigris and Euphrates rivers and possible effects on the evolution of civilizations in lower Mesopotamia. Geoarchaeology 20, 401–423 (2005).

    Google Scholar 

  35. Syvitski, J., Overeem, I., Brakenridge, G. R. & Hamon, M. Floods, floodplains, delta plains — a satellite imaging approach. Sediment. Geol. 267–268, 1–14 (2012).

    Google Scholar 

  36. Macklin, M. G. & Lewin, J. The rivers of civilization. Quat. Sci. Rev. 114, 228–244 (2015).

    Google Scholar 

  37. Marchetti, N., Bortolini, E., Menghi Sartorio, J. C., Orrù, V. & Zaina, F. Long-term urban and population trends in the Southern Mesopotamian floodplains. J. Archaeol. Res. https://doi.org/10.1007/s10814-024-09197-3 (2024).

  38. Dee, M. et al. An absolute chronology for early Egypt using radiocarbon dating and Bayesian statistical modelling. Proc. R. Soc. A 469, 20130395 (2013).

    Google Scholar 

  39. Meadow, R. H. & Kenoyer, J. M. Excavations at Harappa 2000–2001: new insights on chronology and city organization. In South Asian Archaeology 2001. Proc. Sixteenth International Conference of the European Association of South Asian Archaeologists (eds Jarrige, C. & Lefèvre, V.) 207–225 (Editions Recherche sur les Civilisations, 2005).

  40. Wright, R. P. The Ancient Indus: Urbanism, Economy, and Society (Cambridge Univ. Press, 2010).

  41. Liu, L. State emergence in early China. Annu. Rev. Anthropol. 38, 217–232 (2009).

    Google Scholar 

  42. Walsh, K. et al. Holocene demographic fluctuations, climate and erosion in the Mediterranean: a meta data-analysis. Holocene 29, 864–885 (2019).

    Google Scholar 

  43. Coningham, R., & Young, R. The Archaeology of South Asia: From the Indus to Asoka, c.6500BCE–200CE (Cambridge Univ. Press, 2015)

  44. Giaime, M. et al. Evolution of ancient harbours in deltaic contexts: a geoarchaeological typology. Earth Sci. Rev. 191, 141–167 (2019).

    Google Scholar 

  45. Amorosi, A. et al. Middle to late Holocene environmental evolution of the Pisa coastal plain (Tuscany, Italy) and early human settlements. Quat. Int. 303, 93–106 (2013).

    Google Scholar 

  46. Fontijn, D. in Bronze Age Connections: Cultural Contact in Prehistoric Europe (ed. Clark, P.) 129–148 (Oxbow Books, 2009).

  47. Maselli, V. & Trincardi, F. Man-made deltas. Sci. Rep. 3, 1926 (2013).

    Google Scholar 

  48. Kelly, J. The Great Mortality: An Intimate History of the Black Death (Harper Collins, 2006).

  49. Anthony, E. J., Marriner, N. & Morhange, C. Human influence and the changing geomorphology of Mediterranean deltas and coasts over the last 6000 years: from progradation to destruction phase? Earth Sci. Rev. 139, 336–361 (2014).

    Google Scholar 

  50. van Dinter, M. The Roman Limes in the Netherlands: how a delta landscape determined the location of the military structures. Neth. J. Geosci. 92, 11–32 (2013).

    Google Scholar 

  51. Erkens, G., van der Meulen, M. J. & Middelkoop, H. Double trouble: subsidence and CO2 respiration due to 1,000 years of Dutch coastal peatlands cultivation. Hydrogeol. J. 24, 551–568 (2016).

    CAS  Google Scholar 

  52. Vespremeanu-Stroe, A. et al. The impact of the Late Holocene coastal changes on the rise and decay of the ancient city of Histria (southern Danube delta). Quat. Int. 293, 245–256 (2013).

    Google Scholar 

  53. Preoteasa, L. et al. Late-Holocene landscape evolution and human presence in the northern Danube delta (Chilia distributary lobes). Holocene 31, 1459–1475 (2021).

    Google Scholar 

  54. Chen, Y., Syvitski, J. P. M., Gao, S., Overeem, I. & Kettner, A. J. Socio-economic impacts on flooding: a 4000-year history of the Yellow River, China. Ambio 41, 682–698 (2012).

    Google Scholar 

  55. Chen, Y. et al. Quantifying sediment storage on the floodplains outside levees along the lower Yellow River during the years 1580–1849. Earth Surf. Process. Landf. 44, 581–594 (2019).

    Google Scholar 

  56. Simeoni, U. & Corbau, C. A review of the Delta Po evolution (Italy) related to climatic changes and human impacts. Geomorphology 107, 64–71 (2009).

    Google Scholar 

  57. van Koningsveld, M., Mulder, J. P. M., Stive, M. J. F., van der Valk, L. & van der Weck, A. W. Living with sea-level rise and climate change: a case study of the Netherlands. J. Coast. Res. 24, 367–379 (2008).

    Google Scholar 

  58. Chamberlain, E. L., Mehta, J. M., Reimann, T. & Wallinga, J. A geoarchaeological perspective on the challenges and trajectories of Mississippi Delta communities. Geomorphology 360, 107132 (2020).

    Google Scholar 

  59. Vespremeanu-Stroe, A. et al. Holocene evolution of the Danube delta: an integral reconstruction and a revised chronology. Mar. Geol. 388, 38–61 (2017).

    CAS  Google Scholar 

  60. Provansal, M. et al. The geomorphic evolution and sediment balance of the Lower Rhône River (southern France) over the last 130 years: hydropower dams versus other control factors. Geomorphology 219, 27–41 (2014).

    Google Scholar 

  61. Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1211–1362 (IPCC, Cambridge Univ. Press, 2021).

  62. Nicholls, R. J. et al. Stabilization of global temperature at 1.5 °C and 2.0 °C: implications for coastal areas. Philos. Trans. R. Soc. A 376, 20160448 (2018).

    Google Scholar 

  63. Anthony, E. J. et al. Linking rapid erosion of the Mekong River delta to human activities. Sci. Rep. 5, 14745 (2015).

    CAS  Google Scholar 

  64. Besset, M., Anthony, E. J. & Bouchette, F. Multi-decadal variations in delta shorelines and their relationship to river sediment supply: an assessment and review. Earth Sci. Rev. 193, 199–219 (2019).

    Google Scholar 

  65. Minderhoud, P. S. J. et al. The relation between land use and subsidence in the Vietnamese Mekong delta. Sci. Total Environ. 634, 715–726 (2018).

    CAS  Google Scholar 

  66. Anthony, E. J., Besset, M., Zăinescu, F. & Sabatier, F. Multi-decadal deltaic land-surface changes: gauging the vulnerability of a selection of Mediterranean and Black Sea river deltas. J. Mar. Sci. Eng. 9, 512 (2021).

    Google Scholar 

  67. Syvitski, J. et al. Earth’s sediment cycle during the Anthropocene. Nat. Rev. Earth Environ. 3, 179–196 (2022).

    Google Scholar 

  68. Gernaat, D. E. H. J. et al. High-resolution assessment of global technical and economic hydropower potential. Nat. Energy 2, 821–828 (2017).

    Google Scholar 

  69. Ao, Z. et al. A national-scale assessment of land subsidence in China’s major cities. Science 384, 301–306 (2024).

    CAS  Google Scholar 

  70. Leslie, H. A., Brandsma, S. H., van Velzen, M. J. M. & Vethaak, A. D. Microplastics en route: field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ. Int. 101, 133–142 (2017).

    CAS  Google Scholar 

  71. Nicholls, R. J. et al. (eds) Ecosystem Services for Well-Being in Deltas: Integrated Assessment for Policy Analysis (Springer, 2018)

  72. Yuen, K. W. et al. Extent of illegal sand mining in the Mekong Delta. Commun. Earth Environ. 5, 31 (2024).

    Google Scholar 

  73. Eslami, S. et al. Projections of salt intrusion in a mega-delta under climatic and anthropogenic stressors. Commun. Earth Environ. 2, 142 (2021).

    Google Scholar 

  74. Rahman, M. M. et al. Salinization in large river deltas: drivers, impacts and socio-hydrological feedbacks. Water Secur. 6, 100024 (2019).

    Google Scholar 

  75. Nienhuis, J. H. et al. River deltas and sea-level rise. Annu. Rev. Earth Planet. Sci. 51, 79–104 (2023).

    CAS  Google Scholar 

  76. Jung, N. W. et al. Economic development drives massive global estuarine loss in the Anthropocene. Earths Future 12, e2023EF003691 (2024).

    Google Scholar 

  77. Seijger, C. et al. An analytical framework for strategic delta planning: negotiating consent for long-term sustainable delta development. J. Environ. Plan. Manag. 60, 1485–1509 (2017).

    Google Scholar 

  78. Zevenbergen, C., Khan, S. A., van Alphen, J., van Scheltinga, C. T. & Veerbeek, W. Adaptive delta management: a comparison between the Netherlands and Bangladesh Delta Program. Int. J. River Basin Manage. 16, 299–305 (2018).

    Google Scholar 

  79. Cox, J. R. et al. A global synthesis of the effectiveness of sedimentation-enhancing strategies for river deltas and estuaries. Glob. Planet. Change 214, 103796 (2022).

    Google Scholar 

  80. Dunn, F. E. et al. Sedimentation-enhancing strategies for sustainable deltas: an integrated socio-biophysical framework. One Earth 6, 1677–1691 (2023).

    Google Scholar 

  81. Moodie, A. J. & Nittrouer, J. A. Optimized river diversion scenarios promote sustainability of urbanized deltas. Proc. Natl Acad. Sci. USA 118, e2101649118 (2021).

    CAS  Google Scholar 

  82. Du, H. et al. Enriching the concept of solution space for climate adaptation by unfolding legal and governance dimensions. Environ. Sci. Policy 127, 253–262 (2022).

    Google Scholar 

  83. Dunn, F. E. & Minderhoud, P. S. J. Sedimentation strategies provide effective but limited mitigation of relative sea-level rise in the Mekong delta. Commun. Earth Environ. https://doi.org/10.1038/s43247-021-00331-3 (2022).

  84. Kondolf, G. M. et al. Save the Mekong Delta from drowning. Science 376, 583–585 (2022).

    CAS  Google Scholar 

  85. Zăinescu, F., Anthony, E., Vespremeanu-Stroe, A., Besset, M. & Tătui, F. Concerns about data linking delta land gain to human action. Nature 614, E20–E25 (2023).

    Google Scholar 

  86. Minderhoud, P. S. J., Coumou, L., Erkens, G., Middelkoop, H. & Stouthamer, E. Mekong delta much lower than previously assumed in sea-level rise impact assessments. Nat. Commun. 10, 3847 (2019).

    CAS  Google Scholar 

  87. Seeger, K. et al. Assessing land elevation in the Ayeyarwady Delta (Myanmar) and its relevance for studying sea level rise and delta flooding. Hydrol. Earth Syst. Sci. 27, 2257–2281 (2023).

    Google Scholar 

  88. Hooijer, A. & Vernimmen, R. Global LiDAR land elevation data reveal greatest sea-level rise vulnerability in the tropics. Nat. Commun. 12, 3592 (2021).

    CAS  Google Scholar 

  89. Zhu, Q. et al. Hidden delta degradation due to fluvial sediment decline and intensified marine storms. Sci. Adv. https://doi.org/10.1126/sciadv.adk1698 (2024).

  90. Schipper, E. L. F. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner H.-O. et al.) 2655–2807 (IPCC, Cambridge Univ. Press, 2022).

  91. Dunn, F. E. et al. Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress. Environ. Res. Lett. 14, 084034 (2019).

    Google Scholar 

  92. Chua, S. D. X. et al. Can restoring water and sediment fluxes across a mega-dam cascade alleviate a sinking river delta? Sci. Adv. 10, eadn9731 (2024).

    Google Scholar 

  93. Wang, H. J. et al. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): a review. Glob. Planet. Change 157, 93–113 (2017).

    Google Scholar 

  94. Saintilan, N. et al. Widespread retreat of coastal habitat is likely at warming levels above 1.5 °C. Nature 621, 112–119 (2023).

    CAS  Google Scholar 

  95. Zhang, T. et al. Warming-driven erosion and sediment transport in cold regions. Nat. Rev. Earth Environ. 3, 832–851 (2022).

    Google Scholar 

  96. Oppenheimer, M. et al. in Special Report on The Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 321–445 (IPCC, Cambridge Univ. Press, 2022).

  97. Timmermans, J. et al. Panorama New Netherlands (TU Delft, 2023); https://flowsplatform.nl/#/panorama-new-netherlands-1581327249675

  98. van Alphen, J., Haasnoot, M. & Diermanse, F. Uncertain accelerated sea-level rise, potential consequences, and adaptive strategies in the Netherlands. Water 14, 1527 (2022).

    Google Scholar 

  99. Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).

    CAS  Google Scholar 

  100. Schiavina, M. Freire, S., Carioli, A. & MacManus, K. GHS-POP R2023A - GHS population grid multitemporal (1975-2030) [dataset]. European Commission, Joint Research Centre https://doi.org/10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE (2023).

  101. Karra, K. et al. Global land use/land cover with Sentinel 2 and deep learning. In Proc. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS 4704–4707 (IEEE, 2021).

  102. Marconcini, M., Metz-Marconcini, A., Esch, T. & Gorelick, N. Understanding current trends in global urbanisation – the World Settlement Footprint suite. GI Forum 9, 33–38 (2021).

    Google Scholar 

  103. Samapriya, R., Pasquarella, V., Trochim, E. & Swetnam, T. samapriya/awesome-gee-community-datasets: Community Catalog (1.0.9). Zenodo https://doi.org/10.5281/zenodo.8223455 (2023).

Download references

Acknowledgements

P. Pentsch assisted in drawing Figs. 1, 3, 4 and 5, and S. Anthony drew the adaptation strategies on the delta in Box 1. F.Z. benefited from a Centre National d’Etudes Spatiales (CNES) postdoc during the course of this Review.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the ideas and discussions that formed the basis of this Review and to the writing and editing of the manuscript. E.A. designed Figs. 1, 3, 4 and 5, and F.Z. and N.M. designed Fig. 2. E.A. and F.Z. designed Box 1.

Corresponding author

Correspondence to Edward Anthony.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Joel Gunn, Andy Large, Frances Dunn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anthony, E., Syvitski, J., Zăinescu, F. et al. Delta sustainability from the Holocene to the Anthropocene and envisioning the future. Nat Sustain 7, 1235–1246 (2024). https://doi.org/10.1038/s41893-024-01426-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-024-01426-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing