Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Nutrient recycling potential of excreta for global crop and grassland production

Abstract

Nutrient recycling from wastes to agriculture can contribute to food production by closing yield gaps, yet the global amount of poorly utilized nitrogen (N), phosphorus (P) and potassium (K) in excreta at a subnational scale has been insufficiently explored. The global amounts found in human excreta and poorly utilized livestock excreta represent 16% (±7%), 8% (±9%) and 14% (±6%) of crop and grassland N, P and K needs, respectively. National recycling of nutrients in poorly utilized excreta could reduce global net imports of mineral fertilizers by 41% N, 3% P and 36% K. In countries where nutrient supply through locally available livestock excreta and mineral fertilizers do not meet nutrient requirements by crops and grasslands, the recycling of poorly utilized excreta could reduce this difference by, on average, 20% N, 11% P and 13% K, therefore contributing to the move towards a circular economy between food consumption and agriculture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global application of nutrients as mineral fertilizer and nutrient requirements by crops and grasslands compared with global accrual in human and livestock excreta.
Fig. 2: Surveyed countries, including those with low mean fertilization rate relative to global average, have N, P and K in poorly utilized livestock excreta.
Fig. 3: The unbalanced spatial location of nutrients contained in livestock and human excreta compared with crop and grassland nutrient requirements.
Fig. 4: Relationship between country-wide nitrogen fertilizer use and the proportion of poorly-utilized nitrogen.
Fig. 5: Comparison of balances between mineral fertilizer application and nutrients in human and livestock excreta.
Fig. 6: Comparison between the amounts of N, P and K in poorly utilized excreta and their net imports.

Similar content being viewed by others

Data availability

All data used in this manuscript were obtained from publicly available data described in the Methods and calculations are available in the Supplementary Information. Livestock density maps can be found at the Harvard Dataverse repository https://dataverse.harvard.edu/dataverse/glw_3, with the identifiers https://doi.org/10.7910/DVN/GIVQ75, https://doi.org/10.7910/DVN/OCPH42, https://doi.org/10.7910/DVN/33N0JG, https://doi.org/10.7910/DVN/BLWPZN, https://doi.org/10.7910/DVN/SUFASB and https://doi.org/10.7910/DVN/ICHCBH. The national average supply of protein and calories to human population data are available from FAOSTAT database at https://www.fao.org/faostat/en/#data/FS. The GeoTIFF files for crop yield and harvested area were retrieved from https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/PRFF8V and https://doi.org/10.7910/DVN/PRFF8V. Crop-specific coefficients for biological nitrogen fixation estimation are found at https://www.ifastat.org/nutrient-use-efficiency. Grassland net primary production maps are available at https://lpdaac.usgs.gov/products/mod17a3hv006/, whereas the pasture area GeoTIFF file can be found at http://www.earthstat.org/cropland-pasture-area-2000/ and https://doi.org/10.1029/2007GB002952 and the shapefile mapping the global distribution of grasslands per type is available at https://www.worldwildlife.org/publications/world-grassland-types. The monthly averaged data on air temperature were retrieved from the C3S CDS database at https://doi.org/10.24381/cds.f17050d7. Finally, the data on mineral fertilizer production, imports, exports and use were obtained from the FAOSTAT database at https://www.fao.org/faostat/en/#data/RFN.

Code availability

The R markdown for data analysis and mapping is available from the corresponding author upon reasonable request.

References

  1. Komarek, A. M. et al. Agricultural household effects of fertilizer price changes for smallholder farmers in central Malawi. Agric. Syst. 154, 168–178 (2017).

    Article  Google Scholar 

  2. Smith, L. E. D. & Siciliano, G. A comprehensive review of constraints to improved management of fertilizers in China and mitigation of diffuse water pollution from agriculture. Agric. Ecosyst. Environ. 209, 15–25 (2015).

    Article  Google Scholar 

  3. Roy, E. D. et al. The phosphorus cost of agricultural intensification in the tropics. Nat. Plants 2, 16043 (2016).

    Article  CAS  Google Scholar 

  4. Donner, S. The impact of cropland cover on river nutrient levels in the Mississippi River Basin. Glob. Ecol. Biogeogr. 12, 341–355 (2003).

    Article  Google Scholar 

  5. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    Article  CAS  Google Scholar 

  6. Manning, D. A. C. How will minerals feed the world in 2050? Proc. Geol. Assoc. 126, 14–17 (2015).

    Article  Google Scholar 

  7. Peñuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).

    Article  Google Scholar 

  8. Mueller, N. D. et al. Declining spatial efficiency of global cropland nitrogen allocation. Glob. Biogeochem. Cycles 31, 245–257 (2017).

    Article  CAS  Google Scholar 

  9. Lun, F. et al. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency. Earth Syst. Sci. Data 10, 1–18 (2018).

    Article  Google Scholar 

  10. Dhillon, J. S., Eickhoff, E. M., Mullen, R. W. & Raun, W. R. World potassium use efficiency in cereal crops. Agron. J. 111, 889–896 (2019).

    Article  CAS  Google Scholar 

  11. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article  CAS  Google Scholar 

  12. Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    Article  CAS  Google Scholar 

  13. Ilea, R. C. Intensive livestock farming: global trends, increased environmental concerns, and ethical solutions. J. Agric. Environ. Ethics 22, 153–167 (2009).

    Article  Google Scholar 

  14. Bai, Z. et al. Nitrogen, phosphorus, and potassium flows through the manure management chain in China. Environ. Sci. Technol. 50, 13409–13418 (2016).

    Article  CAS  Google Scholar 

  15. Trimmer, J. T. & Guest, J. S. Recirculation of human-derived nutrients from cities to agriculture across six continents. Nat. Sustain. 1, 427–435 (2018).

    Article  Google Scholar 

  16. Towards the Circular Economy: Economic and Business Rationale for an Accelerated Transition (The Ellen MacArthur Foundation, 2013).

  17. Morée, A. L., Beusen, A. H. W., Bouwman, A. F. & Willems, W. J. Exploring global nitrogen and phosphorus flows in urban wastes during the twentieth century: twentieth century urban N and P flows. Glob. Biogeochem. Cycles 27, 836–846 (2013).

    Article  Google Scholar 

  18. Kelova, M. E., Eich-Greatorex, S. & Krogstad, T. Human excreta as a resource in agriculture—evaluating the fertilizer potential of different composting and fermentation-derived products. Resour. Conserv. Recycl. 175, 105748 (2021).

    Article  CAS  Google Scholar 

  19. Water in a Changing World (Earthscan, 2009).

  20. Sichler, T. C., Adam, C., Montag, D. & Barjenbruch, M. Future nutrient recovery from sewage sludge regarding three different scenarios—German case study. J. Clean. Prod. 333, 130130 (2022).

    Article  CAS  Google Scholar 

  21. Harvey, F. Nearly 30,000 tonnes of sewage sludge containing human waste to enter UK. The Guardian www.theguardian.com/environment/2020/sep/02/sewage-sludge-containing-human-waste-uk (2020).

  22. Cucina, M., De Nisi, P., Sordi, S. & Adani, F. Sewage sludge as N-fertilizers for crop production enabling the circular bioeconomy in agriculture: a challenge for the new EU regulation 1009/2019. Sustainability 13, 13165 (2021).

    Article  CAS  Google Scholar 

  23. Milojevic, N. & Cydzik-Kwiatkowska, A. Agricultural use of sewage sludge as a threat of microplastic (MP) spread in the environment and the role of governance. Energies 14, 6293 (2021).

    Article  CAS  Google Scholar 

  24. Paudel, K. P., Bhattarai, K., Gauthier, W. M. & Hall, L. M. Geographic information systems (GIS) based model of dairy manure transportation and application with environmental quality consideration. Waste Manag. 29, 1634–1643 (2009).

    Article  CAS  Google Scholar 

  25. Nolan, T. et al. Economic analyses of pig manure treatment options in Ireland. Bioresour. Technol. 105, 15–23 (2012).

    Article  CAS  Google Scholar 

  26. Schnorf, V., Trutnevyte, E., Bowman, G. & Burg, V. Biomass transport for energy: cost, energy and CO2 performance of forest wood and manure transport chains in Switzerland. J. Clean. Prod. 293, 125971 (2021).

    Article  CAS  Google Scholar 

  27. Oenema, O., Oudendag, D. & Velthof, G. L. Nutrient losses from manure management in the European Union. Livest. Sci. 112, 261–272 (2007).

    Article  Google Scholar 

  28. van Es, H. M., Sogbedji, J. M. & Schindelbeck, R. R. Effect of manure application timing, crop, and soil type on nitrate leaching. J. Environ. Qual. 35, 670–679 (2006).

    Article  Google Scholar 

  29. Schröder, J. J., Jansen, A. G. & Hilhorst, G. J. Long-term nitrogen supply from cattle slurry. Soil Use Manag. 21, 196–204 (2005).

    Article  Google Scholar 

  30. Boessen, C. & Massey R. Securing Manure Spreading Rights Through Easements (Univ. Missouri-Columbia, 2018).

  31. Lassaletta, L. et al. Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry 118, 225–241 (2014).

    Article  Google Scholar 

  32. Oita, A. et al. Substantial nitrogen pollution embedded in international trade. Nat. Geosci. 9, 111–115 (2016).

    Article  CAS  Google Scholar 

  33. Kanter, D. R. et al. Nitrogen pollution policy beyond the farm. Nat. Food 1, 27–32 (2020).

    Article  Google Scholar 

  34. Bai, Z. H. et al. Changes in pig production in China and their effects on nitrogen and phosphorus use and losses. Environ. Sci. Technol. 48, 12742–12749 (2014).

    Article  CAS  Google Scholar 

  35. Uwizeye, A. et al. Nitrogen emissions along global livestock supply chains. Nat. Food 1, 437–446 (2020).

    Article  CAS  Google Scholar 

  36. Liu, J. et al. A review of regulations and guidelines related to winter manure application. Ambio 47, 657–670 (2018).

    Article  Google Scholar 

  37. Kuhn, T., Schäfer, D., Holm-Müller, K. & Britz, W. On-farm compliance costs with the EU-nitrates directive: a modelling approach for specialized livestock production in northwest Germany. Agric. Syst. 173, 233–243 (2019).

    Article  Google Scholar 

  38. Zhang, C. et al. Rebuilding the linkage between livestock and cropland to mitigate agricultural pollution in China. Resour. Conserv. Recycl. 144, 65–73 (2019).

    Article  Google Scholar 

  39. Jin, S. et al. Decoupling livestock and crop production at the household level in China. Nat. Sustain. 4, 48–55 (2020).

    Article  Google Scholar 

  40. Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines (WHO, 2017).

  41. Sustainable Development Goals—Goal 6: Clean Water and Sanitation. United Nations www.sdgfund.org/goal-6-clean-water-and-sanitation (2020).

  42. Leigland, J., Trémolet, S. & Ikeda, J. Achieving Universal Access to Water and Sanitation by 2030: The Role of Blended Finance (World Bank, 2016).

  43. Auerbach, D. in Broken Pumps and Promises (ed. Thomas, E.) 211–216 (Springer, 2016).

  44. Making Blended Finance Work for Water and Sanitation: Unlocking Commercial Finance for SDG 6 (OECD Publishing, 2019).

  45. Rose, C., Parker, A., Jefferson, B. & Cartmell, E. The characterization of feces and urine: a review of the literature to inform advanced treatment technology. Crit. Rev. Environ. Sci. Technol. 45, 1827–1879 (2015).

    Article  CAS  Google Scholar 

  46. McConville, J. R., Metson, G. S. & Persson, H. Acceptance of human excreta derived fertilizers in Swedish grocery stores. City Environ. Interact. 17, 100096 (2023).

    Article  Google Scholar 

  47. Akram, U., Quttineh, N.-H., Wennergren, U., Tonderski, K. & Metson, G. S. Optimizing nutrient recycling from excreta in Sweden and Pakistan: higher spatial resolution makes transportation more attractive. Front. Sustain. Food Syst. 3, 50 (2019).

    Article  Google Scholar 

  48. Gilbert, M. et al. Income disparities and the global distribution of intensively farmed chicken and pigs. PLoS ONE 10, e0133381 (2015).

    Article  Google Scholar 

  49. Chadwick, D. et al. Improving manure nutrient management towards sustainable agricultural intensification in China. Agric. Ecosyst. Environ. 209, 34–46 (2015).

    Article  Google Scholar 

  50. Bora, R. R. et al. Techno-economic feasibility and spatial analysis of thermochemical conversion pathways for regional poultry waste valorization. ACS Sustain. Chem. Eng. 8, 5763–5775 (2020).

    Article  CAS  Google Scholar 

  51. Harder, R., Wielemaker, R., Larsen, T. A., Zeeman, G. & Öberg, G. Recycling nutrients contained in human excreta to agriculture: pathways, processes, and products. Crit. Rev. Environ. Sci. Technol. 49, 695–743 (2019).

    Article  Google Scholar 

  52. Moya, B., Parker, A. & Sakrabani, R. Challenges to the use of fertilisers derived from human excreta: the case of vegetable exports from Kenya to Europe and influence of certification systems. Food Policy 85, 72–78 (2019).

    Article  Google Scholar 

  53. Andersson, M. & Minoia, P. Ecological sanitation: a sustainable goal with local choices. A case study from Taita Hills, Kenya. Afr. Geogr. Rev. 36, 183–199 (2017).

    Google Scholar 

  54. Ito, R., Takahashi, E. & Funamizu, N. Production of slow-released nitrogen fertilizer from urine. Environ. Technol. 34, 2809–2815 (2013).

    Article  CAS  Google Scholar 

  55. Billen, P., Costa, J., Van der Aa, L., Van Caneghem, J. & Vandecasteele, C. Electricity from poultry manure: a cleaner alternative to direct land application. J. Clean. Prod. 96, 467–475 (2015).

    Article  CAS  Google Scholar 

  56. Trimmer, J. T., Cusick, R. D. & Guest, J. S. Amplifying progress toward multiple development goals through resource recovery from sanitation. Environ. Sci. Technol. 51, 10765–10776 (2017).

    Article  CAS  Google Scholar 

  57. Ohm, T.-I., Chae, J.-S., Moon, S.-H. & Jung, B.-J. Experimental study of the characteristics of solid fuel from fry-dried swine excreta. Process Saf. Environ. Prot. 91, 227–234 (2013).

    Article  CAS  Google Scholar 

  58. Simons, A., Solomon, D., Chibssa, W., Blalock, G. & Lehmann, J. Filling the phosphorus fertilizer gap in developing countries. Nat. Geosci. 7, 3–3 (2014).

    Article  Google Scholar 

  59. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).

  60. Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data 5, 180227 (2018).

    Article  Google Scholar 

  61. Smil, V. Nitrogen and food production: proteins for human diets. Ambio 31, 126–131 (2002).

    Article  Google Scholar 

  62. Mihelcic, J. R., Fry, L. M. & Shaw, R. Global potential of phosphorus recovery from human urine and feces. Chemosphere 84, 832–839 (2011).

    Article  CAS  Google Scholar 

  63. Jönsson, H., Stintzing, A. R., Vinneras, B. & Salomon, E. Guidelines on the Use of Urine and Faeces in Crop Production (Stockholm Environment Institute, 2004).

  64. Holbrook, J. T. et al. Sodium and potassium intake and balance in adults consuming self-selected diets. Am. J. Clin. Nutr. 40, 786–793 (1984).

    Article  CAS  Google Scholar 

  65. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. (Earth Data, accessed 18 August 2022); https://doi.org/10.7927/H49C6VHW

  66. IFPRI. Global spatially-disaggregated crop production statistics data for 2010 version 2.0. Harvard Dataverse https://doi.org/10.7910/DVN/PRFF8V (2019).

  67. Wichmann, W. IFA World Fertilizer Use Manual (IFA, 1992).

  68. Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, GB1003 (2008).

    Article  Google Scholar 

  69. Dixon, A. P., Faber-Langendoen, D., Josse, C., Morrison, J. & Loucks, C. J. Distribution mapping of world grassland types. J. Biogeogr. 41, 2003–2019 (2014).

    Article  Google Scholar 

  70. De Leeuw, J. et al. Application of the MODIS MOD 17 net primary production product in grassland carrying capacity assessment. Int. J. Appl. Earth Obs. Geoinf. 78, 66–76 (2019).

    Google Scholar 

  71. ERA5 Monthly Averaged Data on Single Levels from 1979 to Present. C3S https://doi.org/10.24381/CDS.F17050D7 (2019).

  72. 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Institute for Global Environmental Strategies, 2006).

  73. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. IPCC www.ipcc-nggip.iges.or.jp/public/2019rf/vol4.html (2019).

  74. Baston, D. exactextractr: Fast extraction from raster datasets using polygons. R package version 0.10.0. CRAN https://doi.org/10.32614/CRAN.package.exactextractr (2023).

  75. Ku, H. H. Notes on the use of propagation of error formulas. J. Res. Natl Bur. Stan. C 70C, 263 (1966).

    Google Scholar 

  76. Scoones, I. Livestock, methane, and climate change: the politics of global assessments. WIREs Clim. Change 14, e790 (2023).

    Article  Google Scholar 

  77. Tiscornia, G., Jaurena, M. & Baethgen, W. Drivers, process, and consequences of native grassland degradation: insights from a literature review and a survey in Río de la Plata grasslands. Agronomy 9, 239 (2019).

    Article  Google Scholar 

  78. Lammerts Van Bueren, E. T. & Struik, P. C. Diverse concepts of breeding for nitrogen use efficiency: a review. Agron. Sustain. Dev. 37, 50 (2017).

    Article  Google Scholar 

  79. Wang, F. & Peng, S. Yield potential and nitrogen use efficiency of China’s super rice. J. Integr. Agric. 16, 1000–1008 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.D. acknowledges financial support from Centre Mondial de l’Innovation Roullier under the fellowship agreement number OSP 90583.

Author information

Authors and Affiliations

Authors

Contributions

M.D., J.L. and D.W. conceptualized and designed the study. M.D. collected the data and prepared the online supporting material. With help from D.W., M.D. led the data processing and analysis. M.D. and J.L. prepared the first draft of the paper. M.D., J.L. and D.W. contributed to writing the paper.

Corresponding author

Correspondence to Johannes Lehmann.

Ethics declarations

Competing interests

M.D. was employed by Groupe Roullier. The other authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Thomas Nesme and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Sensitivity analysis, references and Supplementary Figs. 1–7.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devault, M., Woolf, D. & Lehmann, J. Nutrient recycling potential of excreta for global crop and grassland production. Nat Sustain 8, 99–111 (2025). https://doi.org/10.1038/s41893-024-01467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-024-01467-8

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene