Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

The potential land-use impacts of bio-based plastics and plastic alternatives

Abstract

One proposed solution to the global plastic crisis is replacing conventional plastics with bio-based plastics and alternatives. Recent studies suggest that bio-based products could mitigate the impacts of plastic pollution and that carbon emissions from the plastic sector could be reduced by using biomass as a plastic feedstock. Given the scale of plastic production, the resulting increase in biomass demand could induce detrimental land-use change at the global level. We use a spatially explicit land-system model to evaluate the land-use impact of bio-based plastic replacement up to the year 2040. At the global level, mitigating both plastic pollution and carbon emissions from the plastic sector could lead to a 22% increase in cropland expansion, a 35% increase in the area of cropland undergoing intensification and a 20% increase in deforestation relative to the baseline scenario. The amount and magnitude of land-use change depend on trade, technology and how alternative products are integrated into the plastics system. Decreasing plastic demand and production may prove a less risky strategy to mitigate the impacts of plastics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scenario design.
Fig. 2: Cropland land-use change relative to the baseline.
Fig. 3: Three scenarios of land-use change and deforestation in Southeast Asia.
Fig. 4: Land-use change in areas with potentially vulnerable people.
Fig. 5: Land-use change in conservation priority areas.

Similar content being viewed by others

Data availability

The initial land-system map and modelling results, as well as land-system suitability regression results, are available via figshare at https://doi.org/10.6084/m9.figshare.25511386 (ref. 62).

Code availability

The CLUMondo model, with documentation, is available at: https://doi.org/10.34894/XZCPQY.

References

  1. Lebreton, L. & Andrady, A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 5, 6 (2019).

  2. Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).

    Article  CAS  Google Scholar 

  3. Zheng, J. & Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Chang. 9, 374–378 (2019).

    Article  Google Scholar 

  4. Helm, L. T., Murphy, E. L., McGivern, A. & Borrelle, S. B. Impacts of plastic waste management strategies. Environ. Rev. https://doi.org/10.1139/er-2021-0117 (2022).

  5. Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455–1461 (2020).

    Article  CAS  Google Scholar 

  6. Breaking the Plastic Wave: A Comprehensive Assessment of Pathways Towards Stopping Ocean Plastic Pollution (PEW Charitable Trusts & Systemiq, 2020); www.pewtrusts.org/-/media/assets/2020/07/breakingtheplasticwave_report.pdf

  7. Song, J. H., Murphy, R. J., Narayan, R. & Davies, G. B. H. Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. B 364, 2127–2139 (2009).

    Article  CAS  Google Scholar 

  8. Exploring the Potential for Adopting Alternative Materials to Reduce Marine Litter (UNEP, 2018); https://wedocs.unep.org/bitstream/handle/20.500.11822/25485/plastic_alternative.pdf?sequence=1&isAllowed=y

  9. Alfano, S., Berruti, F., Denis, N. & Santagostino, A. The future of second-generation biomass. McKinsey www.mckinsey.com/capabilities/sustainability/our-insights/the-future-of-second-generation-biomass (2016).

  10. Brodin, M., Vallejos, M., Opedal, M. T., Area, M. C. & Chinga-Carrasco, G. Lignocellulosics as sustainable resources for production of bioplastics—a review. J. Clean. Prod. 162, 646–664 (2017).

    Article  CAS  Google Scholar 

  11. Crippa, M et al. A Circular Economy for Plastics—Insights from Research and Innovation to Inform Policy and Funding Decisions (European Commission, 2019).

  12. Meys, R. et al. Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science 374, 71–76 (2021).

    Article  CAS  Google Scholar 

  13. Stegmann, P., Daioglou, V., Londo, M., van Vuuren, D. P. & Junginger, M. Plastic futures and their CO2 emissions. Nature 612, 272–276 (2022).

    Article  CAS  Google Scholar 

  14. Fargione, J. E., Plevin, R. J. & Hill, J. D. The ecological impact of biofuels. Annu. Rev. Ecol. Evol. Syst. 41, 351–377 (2010).

    Article  Google Scholar 

  15. Hertel, T. W. et al. Effects of US maize ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses. BioScience 60, 223–231 (2010).

    Article  Google Scholar 

  16. Peng, L., Searchinger, T. D., Zionts, J. & Waite, R. The carbon costs of global wood harvests. Nature 620, 110–115 (2023).

    Article  CAS  Google Scholar 

  17. Searchinger, T. et al. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).

    Article  CAS  Google Scholar 

  18. Bishop, G., Styles, D. & Lens, P. N. L. Environmental performance comparison of bioplastics and petrochemical plastics: a review of life cycle assessment (LCA) methodological decisions. Resour. Conserv. Recycl. 168, 105451 (2021).

    Article  CAS  Google Scholar 

  19. Escobar, N., Haddad, S., Börner, J. & Britz, W. Land use mediated GHG emissions and spillovers from increased consumption of bioplastics. Environ. Res. Lett. 13, 125005 (2018).

    Article  CAS  Google Scholar 

  20. Helm, L. T. The Land-Use Impacts of Plastic Alternatives (Arizona State Univ., 2023).

  21. Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).

    Article  CAS  Google Scholar 

  22. Schulze, K., Malek, Ž. & Verburg, P. H. How will land degradation neutrality change future land system patterns? A scenario simulation study. Environ. Sci. Policy 124, 254–266 (2021).

    Article  Google Scholar 

  23. van Asselen, S. & Verburg, P. H. Land cover change or land-use intensification: simulating land system change with a global-scale land change model. Glob. Chang. Biol. 19, 3648–3667 (2013).

    Article  Google Scholar 

  24. Stehfest, E. et al. Integrated Assessment of Global Environmental Change with Image 3.0. Model Description and Policy Applications (PBL Netherlands Environmental Assessment Agency, 2014).

  25. Van Vuuren, D. et al. The 2021 SSP Scenarios of the IMAGE 3.2 Model. Preprint at EarthArXiv https://doi.org/10.31223/X5CG92 (2021).

  26. Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. 5, 1499–1509 (2021).

    Article  Google Scholar 

  27. Malek, Ž. & Verburg, P. H. Mapping global patterns of land use decision-making. Glob. Environ. Change 65, 102170 (2020).

    Article  Google Scholar 

  28. Venier-Cambron, C., Helm, L. T., Malek, Ž. & Verburg, P. H. Representing justice in global land-use scenarios can align biodiversity benefits with protection from land grabbing. One Earth 7, 896–907 (2024).

    Article  Google Scholar 

  29. Revised Draft Text of the International Legally Binding Instrument on Plastic Pollution, Including in the Marine Environment (UNEP, 2023); https://wedocs.unep.org/bitstream/handle/20.500.11822/44526/RevisedZeroDraftText.pdf

  30. Vidal, F. et al. Designing a circular carbon and plastics economy for a sustainable future. Nature 626, 45–57 (2024).

    Article  CAS  Google Scholar 

  31. Bachmann, M. et al. Towards circular plastics within planetary boundaries. Nat. Sustain. 6, 599–610 (2023).

    Article  Google Scholar 

  32. Lobell, D. B., Cassman, K. G. & Field, C. B. Crop yield gaps: their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 34, 179–204 (2009).

    Article  Google Scholar 

  33. Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).

    Article  Google Scholar 

  34. Ray, D. K., Mueller, N. D., West, P. C. & Foley, J. A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8, e66428 (2013).

    Article  CAS  Google Scholar 

  35. Erisman, J. W. et al. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. B 368, 20130116 (2013).

    Article  Google Scholar 

  36. Rasmussen, L. V. et al. Social-ecological outcomes of agricultural intensification. Nat. Sustain. 1, 275–282 (2018).

    Article  Google Scholar 

  37. Rosegrant, M. W., Ringler, C. & Zhu, T. Water for agriculture: maintaining food security under growing scarcity. Annu. Rev. Environ. Resour. 34, 205–222 (2009).

    Article  Google Scholar 

  38. Hillmyer, M. A. The promise of plastics from plants. Science 358, 868–870 (2017).

    Article  CAS  Google Scholar 

  39. Rosenboom, J.-G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022).

    Article  Google Scholar 

  40. Raj, T., Chandrasekhar, K., Naresh Kumar, A. & Kim, S.-H. Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: a sustainable approach. Renew. Sustain. Energy Rev. 158, 112130 (2022).

    Article  CAS  Google Scholar 

  41. ETP Clean Energy Technology Guide. IEA www.iea.org/data-and-statistics/data-tools/etp-clean-energy-technology-guide (2022).

  42. Position of European Bioplastics: Industrial Use of Agricultural Feedstock (European Bioplastics, 2023); https://docs.european-bioplastics.org/publications/pp/EuBP_PP_Feedstock_availability.pdf

  43. Sustainable Sourcing of Feedstocks for Bioplastics Clarifying Sustainability Aspects Around Feedstock Use for the Production of Bioplastics (TotalEnergies Corbion, 2022); www.totalenergies-corbion.com/media/ijpb1qzl/totalenergiescorbionpla_whitepaper_foodstock_1-3.pdf

  44. Creutzig, F. et al. Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7, 916–944 (2015).

    Article  CAS  Google Scholar 

  45. Hassan, S. S., Williams, G. A. & Jaiswal, A. K. Moving towards the second generation of lignocellulosic biorefineries in the EU: drivers, challenges, and opportunities. Renew. Sustain. Energy Rev. 101, 590–599 (2019).

    Article  CAS  Google Scholar 

  46. Scarborough, P. et al. Vegans, vegetarians, fish-eaters and meat-eaters in the UK show discrepant environmental impacts. Nat. Food 4, 565–574 (2023).

    Article  Google Scholar 

  47. Biopolymers: Facts and Statistics 2022 (IFBB, 2022); www.ifbb-hannover.de/files/IfBB/downloads/faltblaetter_broschueren/f+s/Biopolymers-Facts-Statistics-einseitig-2022.pdf

  48. Nazareth, M., Marques, M. R. C., Leite, M. C. A. & Castro, Í. B. Commercial plastics claiming biodegradable status: is this also accurate for marine environments? J. Hazard. Mater. 366, 714–722 (2019).

    Article  CAS  Google Scholar 

  49. Viera, J. S. C., Marques, M. R. C., Nazareth, M. C., Jimenez, P. C. & Castro, Í. B. On replacing single-use plastic with so-called biodegradable ones: the case with straws. Environ. Sci. Policy 106, 177–181 (2020).

    Article  Google Scholar 

  50. Shen, M. et al. Are biodegradable plastics a promising solution to solve the global plastic pollution? Environ. Pollut. 263, 114469 (2020).

    Article  CAS  Google Scholar 

  51. van Asselen, S. & Verburg, P. H. A land system representation for global assessments and land-use modeling. Glob. Chang. Biol. 18, 3125–3148 (2012).

    Article  Google Scholar 

  52. Wolff, S., Schrammeijer, E. A., Schulp, C. J. E. & Verburg, P. H. Meeting global land restoration and protection targets: what would the world look like in 2050? Glob. Environ. Change 52, 259–272 (2018).

    Article  Google Scholar 

  53. Zabel, F. Global agricultural land resources—a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions (v3.0). Zenodo https://doi.org/10.5281/zenodo.5982577 (2022).

  54. Buchhorn, M. et al. Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2019: Globe. Zenodo https://doi.org/10.5281/ZENODO.3939050 (2020).

  55. Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  56. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options (OECD, 2022).

  57. Lay, J. et al. Taking Stock of the Global Land Rush: Few Development Benefits, Many Human and Environmental Risks (Centre for Development and Environment, 2021); https://landmatrix.org/documents/118/Land_Matrix_Analytical_Report_III_digital.pdf

  58. Stegmann, P., Daioglou, V., Londo, M. & Junginger, M. The plastics integrated assessment model (PLAIA): assessing emission mitigation pathways and circular economy strategies for the plastics sector. MethodsX 9, 101666 (2022).

    Article  CAS  Google Scholar 

  59. International Food Policy Research Institute. Global Spatially-Disaggregated Crop Production Statistics Data for 2010 Version 2.0. Harvard Dataverse https://doi.org/10.7910/DVN/PRFF8V (2019).

  60. European Forest Sector Outlook Study (UNECE & FAO, 2005).

  61. Forest Product Conversion Factors (FAO, ITTO and United Nations, 2020).

  62. Helm, Levi; Venier-Cambron, Camille; Verburg, Peter (2024). The potential land-use impacts of bio-based plastics and plastic alternatives. figshare https://doi.org/10.6084/m9.figshare.25511386

Download references

Acknowledgements

We would like to thank A. Kinzig, B. Turner II and K. Dooley for their gracious comments and feedback on this work. For this study, L.T.H. was supported through internal funding at Arizona State University. Funding sources had no involvement in research design, data collection, data analysis or data interpretation, nor involvement in publication decisions.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: L.T.H. Formal analysis: L.T.H. and C.V.-C. Investigation: L.T.H. Methodology: L.T.H., C.V.-C. and P.H.V. Resources: P.H.V. Software: P.H.V. Visualization: L.T.H. Writing—original draft: L.T.H. Writing—review and editing: L.T.H., C.V.-C. and P.H.V.

Corresponding author

Correspondence to Levi T. Helm.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Laura Rasmussen, Janis Brizga and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods and model description, Supplementary Figs. 1–14 and Tables 1–8.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helm, L.T., Venier-Cambron, C. & Verburg, P.H. The potential land-use impacts of bio-based plastics and plastic alternatives. Nat Sustain 8, 190–201 (2025). https://doi.org/10.1038/s41893-024-01492-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-024-01492-7

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene