Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-strength cellulose fibres enabled by molecular packing

Abstract

Developing high-performance bio-based fibres is highly desirable for improving the sustainability of materials. Cellulose is one of the most abundant bio-derived feedstocks to fabricate such materials. However, the fabrication of high-strength macro cellulose fibres is challenging due to the difficulty in obtaining ordered packing of cellulose molecular chains and nanocrystals in the macro-fibres. Here we develop a draw spinning/de-acetylation method to prepare cellulose fibres with highly ordered molecular packing that incorporates high strength in the obtained fibres. Specifically, a fibre draw spun from well-dispersed cellulose triacetate solution was de-acetylated to generate cellulose fibres, which were then twisted to spirally align the molecular chains. The resulting fibres exhibited mechanical strength of 3.08 GPa and toughness of 215.1 MJ m3, much higher than existing fibre materials. This work paves the way to obtaining high-performance bio-based fibres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural characterization and mechanical properties of the CTFs and DCFs.
Fig. 2: Morphological and microstructural evolution from the CTFs to the DCFs, their particle sizes and diffraction patterns.
Fig. 3: Modulation of the structure and mechanical properties of the DCFs.
Fig. 4: Outstanding mechanical properties and examples of application of the DCFs, textiles and composites.

Similar content being viewed by others

Data availability

All data in this work are available in the text and the Supplementary Information. The relevant raw data for Supplementary Figs. 1–53 and Supplementary Tables 1–7 are provided in the Supplementary Data. Source data are available via Figshare at https://doi.org/10.6084/m9.figshare.28235333 (ref. 65).

References

  1. Liao, X. et al. High strength in combination with high toughness in robust and sustainable polymeric materials. Science 366, 1376–1379 (2019).

    Article  CAS  Google Scholar 

  2. Tu, H., Zhu, M., Duan, B. & Zhang, L. Recent progress in high-strength and robust regenerated cellulose materials. Adv. Mater. 33, e2000682 (2021).

    Article  Google Scholar 

  3. Zhang, L., Leung, M. Y., Boriskina, S. & Tao, X. Advancing life cycle sustainability of textiles through technological innovations. Nat. Sustain. 6, 243–253 (2023).

    Article  Google Scholar 

  4. Olivetti, E. A. & Cullen, J. M. Toward a sustainable materials system. Science 360, 1396–1398 (2018).

    Article  CAS  Google Scholar 

  5. Fang, Z. et al. Critical role of degree of polymerization of cellulose in super-strong nanocellulose films. Matter 2, 1000–1014 (2020).

    Article  Google Scholar 

  6. Pyun, K. R., Rogers, J. A. & Ko, S. H. Materials and devices for immersive virtual reality. Nat. Rev. Mater. 7, 841–843 (2022).

    Article  Google Scholar 

  7. Jia, C. et al. From wood to textiles: top-down assembly of aligned cellulose nanofibers. Adv. Mater. 30, e1801347 (2018).

    Article  Google Scholar 

  8. Hakansson, K. M. et al. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat. Commun. 5, 4018 (2014).

    Article  Google Scholar 

  9. Mittal, N. et al. Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 12, 6378–6388 (2018).

    Article  CAS  Google Scholar 

  10. Mittal, N. et al. Ion-specific assembly of strong, tough, and stiff biofibers. Angew. Chem. Int. Ed. 58, 18562–18569 (2019).

    Article  CAS  Google Scholar 

  11. Mittal, N. et al. Ultrastrong and bioactive nanostructured bio-based composites. ACS Nano 11, 5148–5159 (2017).

    Article  CAS  Google Scholar 

  12. Lee, T.-W., Han, M., Lee, S.-E. & Jeong, Y. G. Electrically conductive and strong cellulose-based composite fibers reinforced with multiwalled carbon nanotube containing multiple hydrogen bonding moiety. Compos. Sci. Technol. 123, 57–64 (2016).

    Article  CAS  Google Scholar 

  13. Liu, W. et al. Eco-friendly post-consumer cotton waste recycling for regenerated cellulose fibers. Carbohydr. Polym. 206, 141–148 (2019).

    Article  CAS  Google Scholar 

  14. Liu, X. et al. Fabrication and characterization of chemical crosslinked cellulose fiber by dissolving cellulose in alkali urea aqueous solvent. J. Appl. Polym. Sci. 140, e53533 (2022).

    Article  Google Scholar 

  15. Uddin, A. J., Yamamoto, A., Gotoh, Y., Nagura, M. & Iwata, M. Preparation and physical properties of regenerated cellulose fibres from sugarcane bagasse. Text. Res. J. 80, 1846–1858 (2010).

    Article  CAS  Google Scholar 

  16. Zhang, J., Tominaga, K., Yamagishi, N. & Gotoh, Y. Comparison of regenerated cellulose fibers spun from ionic liquid solutions with lyocell fiber. J. Fiber Sci. Technol. 76, 257–266 (2020).

    Article  Google Scholar 

  17. Hauru, L. K. J., Hummel, M., Michud, A. & Sixta, H. Dry jet-wet spinning of strong cellulose filaments from ionic liquid solution. Cellulose 21, 4471–4481 (2014).

    Article  CAS  Google Scholar 

  18. Liang, Q. et al. High-strength superstretchable helical bacterial cellulose fibers with a self-fiber-reinforced structure. ACS Appl. Mater. Interfaces 13, 1545–1554 (2021).

    Article  CAS  Google Scholar 

  19. Michud, A., Hummel, M. & Sixta, H. Influence of molar mass distribution on the final properties of fibers regenerated from cellulose dissolved in ionic liquid by dry-jet wet spinning. Polymer 75, 1–9 (2015).

    Article  CAS  Google Scholar 

  20. Sixta, H. et al. Ioncell-F: a high-strength regenerated cellulose fibre. Nord. Pulp. Pap. Res. J. 30, 43–57 (2015).

    Article  CAS  Google Scholar 

  21. Hooshmand, S., Aitomäki, Y., Berglund, L., Mathew, A. P. & Oksman, K. Enhanced alignment and mechanical properties through the use of hydroxyethyl cellulose in solvent-free native cellulose spun filaments. Compos. Sci. Technol. 150, 79–86 (2017).

    Article  CAS  Google Scholar 

  22. Hooshmand, S., Aitomaki, Y., Norberg, N., Mathew, A. P. & Oksman, K. Dry-spun single-filament fibers comprising solely cellulose nanofibers from bioresidue. ACS Appl. Mater. Interfaces 7, 13022–13028 (2015).

    Article  CAS  Google Scholar 

  23. Shen, Y. et al. High velocity dry spinning of nanofibrillated cellulose (CNF) filaments on an adhesion controlled surface with low friction. Cellulose 23, 3393–3398 (2016).

    Article  CAS  Google Scholar 

  24. Cai, Y. et al. Hierarchical assembly of nanocellulose into filaments by flow-assisted alignment and interfacial complexation: conquering the conflicts between strength and toughness. ACS Appl. Mater. Interfaces 12, 32090–32098 (2020).

    Article  CAS  Google Scholar 

  25. Grande, R., Trovatti, E., Carvalho, A. J. F. & Gandini, A. Continuous microfiber drawing by interfacial charge complexation between anionic cellulose nanofibers and cationic chitosan. J. Mater. Chem. A 5, 13098–13103 (2017).

    Article  CAS  Google Scholar 

  26. Toivonen, M. S. et al. Interfacial polyelectrolyte complex spinning of cellulose nanofibrils for advanced bicomponent fibers. Biomacromolecules 18, 1293–1301 (2017).

    Article  CAS  Google Scholar 

  27. Zhang, K. & Liimatainen, H. Hierarchical assembly of nanocellulose-based filaments by interfacial complexation. Small 14, e1801937 (2018).

    Article  Google Scholar 

  28. Zhao, H., Yang, Z. & Guo, L. Nacre-inspired composites with different macroscopic dimensions: strategies for improved mechanical performance and applications. NPG Asia Mater. 10, 1–22 (2018).

    Article  Google Scholar 

  29. Spinks, G. M. Advanced actuator materials powered by biomimetic helical fiber topologies. Adv. Mater. 32, 1904093 (2020).

    Article  CAS  Google Scholar 

  30. Hou, Y. et al. Strengthening and toughening hierarchical nanocellulose via humidity-mediated interface. ACS Nano 15, 1310–1320 (2021).

    Article  CAS  Google Scholar 

  31. Gaminian, H. & Montazer, M. Carbon black enhanced conductivity, carbon yield and dye adsorption of sustainable cellulose derived carbon nanofibers. Cellulose 25, 5227–5240 (2018).

    Article  CAS  Google Scholar 

  32. Nishiyama, Y., Langan, P. & Chanzy, H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124, 9074–9082 (2002).

    Article  CAS  Google Scholar 

  33. Yue, H. et al. Determination of cross-sectional area of natural plant fibres and fibre failure analysis by in situ SEM observation during microtensile tests. Cellulose 26, 4693–4706 (2019).

    Article  Google Scholar 

  34. Cai, J. et al. Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41, 9345–9351 (2008).

    Article  CAS  Google Scholar 

  35. Wang, S., Lu, A. & Zhang, L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 53, 169–206 (2016).

    Article  CAS  Google Scholar 

  36. Zhu, K. et al. Mechanically strong multifilament fibers spun from cellulose solution via inducing formation of nanofibers. ACS Sustain. Chem. Eng. 6, 5314–5321 (2018).

    Article  CAS  Google Scholar 

  37. Gasser, C. A. et al. Sequential lignin depolymerization by combination of biocatalytic and formic acid/formate treatment steps. Appl. Microbiol. Biotechnol. 101, 2575–2588 (2016).

    Article  Google Scholar 

  38. Li, Y., Feng, Y., Sun, X. & He, Y. A sodium‐ion‐conducting direct formate fuel cell: generating electricity and producing base. Angew. Chem. Int. Ed. 56, 5734–5737 (2017).

    Article  CAS  Google Scholar 

  39. Munekata, S. & Sobue, H. The single crystal of cellulose. Polym. Lett. 5, 1043–1045 (1967).

    Article  CAS  Google Scholar 

  40. Song, J. et al. Processing bulk natural wood into a high-performance structural material. Nature 554, 224–228 (2018).

    Article  CAS  Google Scholar 

  41. Gosline, J. M., Guerette, P. A., Ortlepp, C. S. & Savage, K. N. The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295–3303 (1999).

    Article  CAS  Google Scholar 

  42. Li, Z. et al. Sustainable high-strength macrofibres extracted from natural bamboo. Nat. Sustain. 5, 235–244 (2021).

    Article  Google Scholar 

  43. Dou, Y. et al. Artificial spider silk from ion-doped and twisted core-sheath hydrogel fibres. Nat. Commun. 10, 5293 (2019).

    Article  Google Scholar 

  44. Elices, M., Plaza, G. R., Perez-Rigueiro, J. & Guinea, G. V. The hidden link between supercontraction and mechanical behavior of spider silks. J. Mech. Behav. Biomed. Mater. 4, 658–669 (2011).

    Article  Google Scholar 

  45. Persson, N.-K., Martinez, J. G., Zhong, Y., Maziz, A. & Jager, E. W. H. Actuating textiles: next generation of smart textiles. Adv. Mater. Technol. 3, 1700397 (2018).

    Article  Google Scholar 

  46. Li, H., Tang, Z., Liu, Z. & Zhi, C. Evaluating flexibility and wearability of flexible energy storage devices. Joule 3, 613–619 (2019).

    Article  Google Scholar 

  47. Ma, Z. et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20, 859–868 (2021).

    Article  CAS  Google Scholar 

  48. Sayyed, A. J., Deshmukh, N. A. & Pinjari, D. V. A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose 26, 2913–2940 (2019).

    Article  CAS  Google Scholar 

  49. Wang, D., Chen, Q., Hu, J., Fu, M. & Luo, Y. High flux recovery of copper(II) from ammoniacal solution with stable sandwich supported liquid membrane. Ind. Eng. Chem. Res. 54, 4823–4831 (2015).

    Article  CAS  Google Scholar 

  50. Jiang, X., Bai, Y., Chen, X. & Liu, W. A review on raw materials, commercial production and properties of lyocell fiber. J. Bioresour. Bioprod. 5, 16–25 (2020).

    Google Scholar 

  51. Chatzi, E. G. & Koenig, J. L. Morphology and structure of Kevlar fibers: a review. Polym.-Plast. Technol. Eng. 26, 229–270 (1987).

    Article  CAS  Google Scholar 

  52. Nataraj, S. K., Yang, K. S. & Aminabhavi, T. M. Polyacrylonitrile-based nanofibers—a state-of-the-art review. Prog. Polym. Sci. 37, 487–513 (2012).

    Article  CAS  Google Scholar 

  53. Xia, L., Xi, P. & Cheng, B. A comparative study of UHMWPE fibers prepared by flash-spinning and gel-spinning. Mater. Lett. 147, 79–81 (2015).

    Article  CAS  Google Scholar 

  54. Zhang, D. B., Liu, Z. F., Zhong, W. H., Qin, Z. M. & Xiao, Z. X. Preparation and structural behavior of high-performance PBO fibers. J. Phys. Conf. Ser. 2460, 012081 (2023).

    Article  CAS  Google Scholar 

  55. Zhang, M., Niu, H. & Wu, D. Polyimide fibers with high strength and high modulus: preparation, structures, properties, and applications. Macromol. Rapid Commun. 39, 1800141 (2018).

    Article  Google Scholar 

  56. Kane, A., Giraudet, S., Vilmain, J.-B. & Le Cloirec, P. Intensification of the temperature-swing adsorption process with a heat pump for the recovery of dichloromethane. J. Environ. Chem. Eng. 3, 734–743 (2015).

    Article  CAS  Google Scholar 

  57. López, S. E. & Salazar, J. Trifluoroacetic acid: uses and recent applications in organic synthesis. J. Fluor. Chem. 156, 73–100 (2013).

    Article  Google Scholar 

  58. Hyman, D. Mixing and agitation. Adv. Chem. Eng. 3, 119–202 (1962).

    Article  CAS  Google Scholar 

  59. Lang, C. et al. Nanostructured block copolymer muscles. Nat. Nanotechnol. 17, 752–758 (2022).

    Article  CAS  Google Scholar 

  60. Ahvenainen, P., Kontro, I. & Svedström, K. Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23, 1073–1086 (2016).

    Article  CAS  Google Scholar 

  61. Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A. & Johnson, D. K. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels Bioprod. 3, 10 (2010).

    Article  Google Scholar 

  62. Poletto, M., Ornaghi, H. L. & Zattera, A. J. Native cellulose: structure, characterization and thermal properties. Materials 7, 6105–6119 (2014).

    Article  Google Scholar 

  63. Howell, C. et al. Effects of hot water extraction and fungal decay on wood crystalline cellulose structure. Cellulose 18, 1179–1190 (2011).

    Article  CAS  Google Scholar 

  64. Ming, X. et al. 2D-topology-seeded graphitization for highly thermally conductive carbon fibers. Adv. Mater. 34, 2201867 (2022).

    Article  CAS  Google Scholar 

  65. Liu, Z. Source_data.rar. Figshare https://doi.org/10.6084/m9.figshare.28235333 (2019).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 52350120, 52225306, 52090034, 51973093, 51773094 and 22371300), the National Key Research and Development Program of China (grant no. 2022YFB3807100), Frontiers Science Center for New Organic Matter, Nankai University (grant no. 63181206), the Fundamental Research Funds for the Central Universities (grant no. 63171219), Lingyu Grant (2021-JCJQ-JJ-1064), Beijing-Tianjin-Hebei Basic Research Cooperation Project (no. J230023), Tianjin Science and Technology Program (no. 22JCYBJC01260), Tianjin Basic Application Research Project (22JCYBJC01260), and Anhui Provincial Science and Technology Innovation Tackling Program (no. 202423i08050057). This work was also supported by the User Experiment Assist System of Shanghai Synchrotron Radiation Facility (SSRF), Beijing Synchronization Radiation Facility (BSRF), the Institute of Tianjin Seawater Desalination and Multipurpose Utilization.

Author information

Authors and Affiliations

Authors

Contributions

Z.L., X.Z., M.Z. and K.Y. designed the experiments. Z.L., X.Z., M.Z., K.Y., C.L., W. Gu, M.W., J.L., K.W., Y.X., S.L., Y.L., W. Guo, W.Z., J.B., D.Y. and Y.Z. performed most of the experiments, participated in analysis of the results and co-wrote the paper. All authors contributed to the general discussion and reviewing of the paper.

Corresponding authors

Correspondence to Meifang Zhu, Xiang Zhou or Zunfeng Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Marco Beaumont, Xiaoming Tao and Haipeng Yu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–53, Tables 1–7 and Videos 1 and 2.

Reporting Summary

Supplementary Video 1

Continuous spinning of a single CTF.

Supplementary Video 2

Continuous spinning of multiple CTFs.

Supplementary Data

Supplementary Data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Li, C., Gu, W. et al. High-strength cellulose fibres enabled by molecular packing. Nat Sustain 8, 411–421 (2025). https://doi.org/10.1038/s41893-025-01523-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-025-01523-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing