Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stable and high-yield hydrogen peroxide electrosynthesis from seawater

Abstract

Electrocatalytic two-electron oxygen reduction reaction (2e ORR) in seawater offers a sustainable route for hydrogen peroxide (H2O2) production. However, due to the high concentration of Cl ions and competitive 4e ORR, there is a lack of efficient and long-term stable seawater electrocatalysts. Here we report a high-performance electrocatalyst design based on NiPS3 nanosheets enabling efficient H2O2 production from seawater. Specifically, the NiPS3 nanosheets deliver a 2e ORR selectivity of 98%, a H2O2 yield of 6.0 mol gcat−1 h−1 and robust stability for over 1,000 h in simulated seawater. Underlying the exciting performance is the synergy of the S2−, Ni2+ and P4+ sites where the octahedral S2− skeleton repels Cl ions, the Ni2+ sites enable the modest binding strength of *OOH intermediate, and the P4+ sites interact with H2O to trigger the protonation of proximal O atom of *OOH. The seawater electrocatalysis system also allows for scalable synthesis of solid H2O2, tandem oxidation reaction of biomass to organic acid and direct use of the produced H2O2 as a sterilizing agent. Once integrated with photovoltaics, the solar-powered electrolysis device can operate in real seawater. Our findings pave the way for sustainable conversion of seawater into value-added products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural characterization of NiPS3.
Fig. 2: Electrocatalytic performance in simulated seawater.
Fig. 3: Mechanistic understanding.
Fig. 4: Practical applications of electrocatalytic 2e ORR in real seawater.

Similar content being viewed by others

Data availability

All data are available within the paper and Supplementary Information. Source data are provided with this paper.

References

  1. Xia, C. et al. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019).

    Article  CAS  Google Scholar 

  2. Sun, Y., Han, L. & Strasser, P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem. Soc. Rev. 49, 6605–6631 (2020).

    Article  CAS  Google Scholar 

  3. Hou, H. L., Zeng, X. K. & Zhang, X. W. Production of hydrogen peroxide through photocatalytic processes: a critical review of recent advances. Angew. Chem. Int. Ed. 59, 17356 (2020).

    Article  CAS  Google Scholar 

  4. Edwards, J. K. & Hutchings, G. J. Palladium and gold–palladium catalysts for the direct synthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 47, 9192–9198 (2008).

    Article  CAS  Google Scholar 

  5. Zhang, C. et al. Crystal engineering enables cobalt-based metal–organic frameworks as high-performance electrocatalysts for H2O2 production. J. Am. Chem. Soc. 14, 7797–7799 (2023).

    Google Scholar 

  6. Fan, R. et al. Ultrastable electrocatalytic seawater splitting at ampere-level current density. Nat. Sustain. 7, 158–167 (2024).

    Article  Google Scholar 

  7. Jin, H. et al. Emerging materials and technologies for electrocatalytic seawater splitting. Sci. Adv. 9, eadi7755 (2023).

    Article  CAS  Google Scholar 

  8. Chang, J. et al. Dual-doping and synergism toward high-performance seawater electrolysis. Adv. Mater. 33, 2101425 (2021).

    Article  CAS  Google Scholar 

  9. Hu, H., Wang, X., Attfield, J. P. & Yang, M. Metal nitrides for seawater electrolysis. Chem. Soc. Rev. 53, 163–203 (2024).

    Article  CAS  Google Scholar 

  10. Tan, X. et al. Toward an understanding of the enhanced CO2 electroreduction in NaCl electrolyte over CoPc molecule-implanted graphitic carbon nitride catalyst. Adv. Energy Mater. 11, 2100075 (2021).

    Article  CAS  Google Scholar 

  11. Bai, S. et al. On factors of ions in seawater for CO2 reduction. Appl. Catal. B 323, 122166 (2023).

    Article  CAS  Google Scholar 

  12. Zhao, Q. et al. Approaching a high-rate and sustainable production of hydrogen peroxide: oxygen reduction on Co–N–C single-atom electrocatalysts in simulated seawater. Energy Environ. Sci. 14, 5444–5456 (2021).

    Article  CAS  Google Scholar 

  13. Zhang, E. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem. Int. Ed. 61, e202117347 (2022).

    Article  CAS  Google Scholar 

  14. Li, J. et al. Interaction of metal ions in high efficiency seawater hydrogen peroxide production by a carbon-based photocatalyst. Appl. Catal. B 343, 123541 (2024).

    Article  CAS  Google Scholar 

  15. Mase, K. et al. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nat. Commun. 7, 11470 (2016).

    Article  CAS  Google Scholar 

  16. Chen, L. et al. Seawater electrolysis for fuels and chemicals production: fundamentals, achievements, and perspectives. Chem. Soc. Rev. 53, 7455–7488 (2024).

    Article  CAS  Google Scholar 

  17. Wang, N. et al. Regulating N species in N-doped carbon electro-catalysts for high-efficiency synthesis of hydrogen peroxide in simulated seawater. Adv. Sci. 10, 2302446 (2023).

    Article  CAS  Google Scholar 

  18. Rao, T. et al. Phase transitions and water splitting applications of 2D transition metal dichalcogenides and metal phosphorous trichalcogenides. Adv. Sci. 8, 2002284 (2021).

    Article  CAS  Google Scholar 

  19. Wang, F. et al. New frontiers on van der Waals layered metal phosphorous trichalcogenides. Adv. Funct. Mater. 28, 1802151 (2018).

    Article  Google Scholar 

  20. Li, W. et al. Expediting oxygen evolution by optimizing cation and anion complexity in electrocatalysts based on metal phosphorous trichalcogenides. Angew. Chem. Int. Ed. 62, e202214570 (2023).

    Article  CAS  Google Scholar 

  21. Liu, Y. et al. Synergizing hydrogen spillover and deprotonation by the internal polarization field in a MoS2/NiPS3 vertical heterostructure for boosted water electrolysis. Adv. Mater. 34, 2203615 (2022).

    Article  CAS  Google Scholar 

  22. Wang, H. et al. Exfoliated 2D layered and nonlayered metal phosphorous trichalcogenides nanosheets as promising electrocatalysts for CO2 reduction. Angew. Chem. Int. Ed. 62, e202217253 (2023).

    Article  CAS  Google Scholar 

  23. Yang, P. et al. Highly enhanced chloride adsorption mediates efficient neutral CO2 electroreduction over a dual-phase copper catalyst. J. Am. Chem. Soc. 145, 8714–8725 (2023).

    Article  CAS  Google Scholar 

  24. Zhang, S. et al. Boosted photoreforming of plastic waste via defect-rich NiPS3 nanosheets. J. Am. Chem. Soc. 145, 6410–6419 (2023).

    Article  CAS  Google Scholar 

  25. Mi, M. et al. Variation between antiferromagnetism and ferrimagnetism in NiPS3 by electron doping. Adv. Funct. Mater. 32, 2112750 (2022).

    Article  CAS  Google Scholar 

  26. Wu, Z. et al. Novel photodynamic therapy using two-dimensional NiPS3 nanosheets that target hypoxic microenvironments for precise cancer treatment. Nanophotonics 12, 81–98 (2023).

    Article  CAS  Google Scholar 

  27. Budniak, A. K. et al. Spectroscopy and structural investigation of iron phosphorus trisulfide-FePS3. Adv. Optical Mater. 10, 2102489 (2022).

    Article  CAS  Google Scholar 

  28. Perry, S. C. et al. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442–458 (2019).

    Article  CAS  Google Scholar 

  29. Cheng, Z., Abernathy, H. & Liu, M. Raman spectroscopy of nickel sulfide Ni3S2. Phys. Chem. C 111, 17997–18000 (2007).

    Article  CAS  Google Scholar 

  30. Lliev, M. N. & Schmid, H. Raman spectroscopy of M3B7O13X boracites (M = Cr,Co,Ni,Cu,Zn,Cd; X = Cl,Br,I). J. Raman Spectrosc. 45, 267–273 (2014).

    Article  Google Scholar 

  31. Du, K. et al. Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 10, 1738–1743 (2016).

    Article  CAS  Google Scholar 

  32. Zhang, C. et al. Trimetallic sulfide hollow superstructures with engineered d-band center for oxygen reduction to hydrogen peroxide in alkaline solution. Adv. Sci. 9, 2104768 (2022).

    Article  CAS  Google Scholar 

  33. Sun, Y. et al. Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal–nitrogen–carbon catalysts. J. Am. Chem. Soc. 141, 12372–12381 (2019).

    Article  CAS  Google Scholar 

  34. Wang, Z. et al. Hydrogen peroxide generation with 100% Faradaic efficiency on metal-free carbon black. ACS Catal. 11, 2454–2459 (2021).

    Article  CAS  Google Scholar 

  35. Chen, S. et al. Chemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxide. Angew. Chem. Int. Ed. 60, 16607–16614 (2021).

    Article  CAS  Google Scholar 

  36. Fan, M. et al. N–B–OH site-activated graphene quantum dots for boosting electrochemical hydrogen peroxide production. Adv. Mater. 35, 2209086 (2023).

    Article  CAS  Google Scholar 

  37. Jung, E. et al. Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 19, 436–442 (2020).

    Article  CAS  Google Scholar 

  38. Hayyan, M., Hashim, M. A. & AlNashef, I. M. Superoxide ion: generation and chemical implications. Chem. Rev. 116, 3029–3085 (2016).

    Article  CAS  Google Scholar 

  39. Woo, J. et al. Heteroatom-doped carbon-based oxygen reduction electrocatalysts with tailored four-electron and two-electron selectivity. Chem. Commun. 57, 7350–7361 (2021).

    Article  CAS  Google Scholar 

  40. Li, Z. et al. High-efficiency electroreduction of O2 into H2O2 over ZnCo bimetallic triazole frameworks promoted by ligand activation. Angew. Chem. Int. Ed. 63, e202314266 (2024).

    Article  CAS  Google Scholar 

  41. Roth, D., Stirn, J., Stephan, D. W. & Greb, L. Lewis superacidic catecholato phosphonium ions: phosphorus-ligand cooperative C–H bond activation. J. Am. Chem. Soc. 143, 15845–15851 (2021).

    Article  CAS  Google Scholar 

  42. Kang, X. et al. A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer. Nat. Commun. 14, 3617 (2023).

    Article  Google Scholar 

  43. Xue, S. et al. NiPS3 nanosheet–graphene composites as highly efficient electrocatalysts for oxygen evolution reaction. ACS Nano 12, 5297–5305 (2018).

    Article  CAS  Google Scholar 

  44. Chi, W. S. et al. Employing electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrodes. Chem. Commun. 48, 9501–9503 (2012).

    Article  CAS  Google Scholar 

  45. Xia, C. et al. Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide. Nat. Catal. 3, 125–134 (2020).

    Article  CAS  Google Scholar 

  46. Li, X. et al. Hydrogen peroxide-mediated tandem catalysis for electrifying chemical synthesis. Chem Catal. 4, 100997 (2024).

    Article  CAS  Google Scholar 

  47. Bagno, A. et al. Prediction of the 1H and 13C NMR spectra of r-D-glucose in water by DFT methods and MD simulations. J. Org. Chem. 72, 7373–7381 (2007).

    Article  CAS  Google Scholar 

  48. Kumar, S., Sharma, S., Kansai, S. K. & Elumalai, S. Efficient conversion of glucose into fructose via extraction-assisted isomerization catalyzed by endogenous polyamine spermine in the aqueous phase. ACS Omega 5, 2406–2418 (2020).

    Article  CAS  Google Scholar 

  49. Ajmi, K. et al. Polyvinyl acetate processing wastewater treatment using combined Fenton’s reagent and fungal consortium: application of central composite design for conditions optimization. J. Hazard. Mater. 358, 243–255 (2018).

    Article  CAS  Google Scholar 

  50. Kerley, M. S. et al. Alkaline hydrogen peroxide treatment unlocks energy in agricultural by-products. Science 230, 820–822 (1985).

    Article  CAS  Google Scholar 

  51. Jia, J. et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 7, 13237 (2016).

    Article  CAS  Google Scholar 

  52. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  53. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  54. Perdew, J. P. & Burke, K. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  55. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  56. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  57. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  58. Wang, J. et al. Cu-doped iron oxide for the efficient electrocatalytic nitrate reduction reaction. Nano Lett. 23, 1897–1903 (2023).

    Article  CAS  Google Scholar 

  59. Wang, H.-F. & Liu, Z.-P. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network. J. Am. Chem. Soc. 130, 10996–11004 (2008).

    Article  CAS  Google Scholar 

  60. Shang, C. & Liu, Z.-P. Constrained Broyden minimization combined with the dimer method for locating transition state of complex reactions. J. Chem. Theory Comput. 6, 1136–1144 (2010).

    Article  CAS  Google Scholar 

  61. Zhang, X.-J., Shang, C. & Liu, Z.-P. Double-ended surface walking method for pathway building and transition state location of complex reactions. J. Chem. Theory Comput. 9, 5745–5753 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work received financial support from the National Natural Science Foundation of China NSFC 22075085 (C.Y.), 22475072 (C.Y.) and 22305084 (C.Z.) and East China Normal University Multifunctional Platform for Innovation (004).

Author information

Authors and Affiliations

Authors

Contributions

C.Y., C.L. and C.Z. conceived the idea, supervised the work and revised the paper. C.Z. performed most of the experiment. P.S. and G.W. carried out the DFT calculation. Y.Z. and T.B. took part in the material characterizations and electrochemical measurements. X.Z., Z.L. and Y.W. provided suggestions on experimental results. All authors contributed to the discussion and revision of the paper.

Corresponding authors

Correspondence to Chao Liu or Chengzhong Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Mingyang Deng, Juncai Dong, Young Jin Sa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–54 and Tables 1–4.

Reporting Summary

Source data

Source Data Fig. 1

Characterization data.

Source Data Fig. 2

Electrochemical results.

Source Data Fig. 3

Electrochemical results and calculation data.

Source Data Fig. 4

Application results.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Shan, P., Zou, Y. et al. Stable and high-yield hydrogen peroxide electrosynthesis from seawater. Nat Sustain 8, 542–552 (2025). https://doi.org/10.1038/s41893-025-01538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-025-01538-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing