Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Forest biodiversity and structure modulate human health benefits and risks

Abstract

The benefits and risks of forests to human health are widely recognized. Yet, variation across forest types and their ecological characteristics driving health effects remain underexplored. Based on a continental-scale, interdisciplinary empirical database from 164 European forest stands, we constructed a Bayesian Belief Network to quantify seven causal pathways relating distinct forest types to physical and mental health. These forest–health pathways included mental well-being via visual or auditory stimuli, thermal comfort, polyphenol content of medicinal plants, mushrooms and nutrition, air quality, and ticks and Lyme disease. Results show that forests consistently provide net health benefits regardless of their ecological characteristics. Forest canopy density and tree species diversity emerge as key drivers, but their effect size and directionality are strongly pathway-dependent. Changes in forest canopy density can generate trade-offs. For example, forests optimized for heat buffering and air pollution mitigation may compromise medicinal plant yield and enhance Lyme disease prevalence. Tree diversity effects were weaker but more uniformly positive. Therefore, forest management should account for such trade-offs to tailor forest biodiversity and functioning to local public health priorities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study design.
Fig. 2: Sensitivities of forest–health pathways to the characteristics of tree diversity, structure and composition.
Fig. 3: Synergies and trade-offs between forest–health pathways, based on mutual information levels between nodes of different pathways.
Fig. 4: Health effect magnitudes relative to several baseline conditions and under contrasting tree diversity and canopy density.

Similar content being viewed by others

Data availability

The BBN file that supports the findings of this study is available via Figshare at https://figshare.com/s/63ac8597986bc3d81e2f (ref. 32). It can be used to replicate the findings or for adding new data (belief updating). The individual datasets used to operationalize the BBN are tied to their respective studies, which are cited in the manuscript and listed in the Supplementary Information. Whether data are readily available via repositories or have to be requested from the owners depends on the study.

References

  1. Beute, F. et al. How do different types and characteristics of green space impact mental health? A scoping review. People Nat. 5, 1839–1876 (2023).

    Article  Google Scholar 

  2. Hartig, T., Mitchell, R., de Vries, S. & Frumkin, H. Nature and Health. Annu. Rev. Public Health 35, 207–228 (2014).

    Article  Google Scholar 

  3. Konijnendijk, C., Devkota, D., Mansourian, S. & Wildburger, C. Forests and Trees for Human Health: Pathways, Impacts, Challenges and Response Options. A Global Assessment Report (IUFRO, 2023).

  4. Nature, Biodiversity and Health: An Overview of Interconnections (World Health Organization, 2021).

  5. Reyes-Riveros, R. et al. Linking public urban green spaces and human well-being: a systematic review. Urban For. Urban Green. 61, 127105 (2021).

    Article  Google Scholar 

  6. Noncommunicable Diseases Progress Monitor (World Health Organization, 2022).

  7. Patel, V. et al. The Lancet Commission on global mental health and sustainable development. Lancet 392, 1553–1598 (2018).

    Article  Google Scholar 

  8. Chi, D. et al. Residential exposure to urban trees and medication sales for mood disorders and cardiovascular disease in Brussels, Belgium: an ecological study. Environ. Health Perspect. 130, 057003 (2022).

    Article  Google Scholar 

  9. Iungman, T. et al. Cooling cities through urban green infrastructure: a health impact assessment of European cities. Lancet 401, 577–589 (2023).

    Article  Google Scholar 

  10. Barboza, E. P. et al. Green space and mortality in European cities: a health impact assessment study. Lancet Planet. Health 5, e718–e730 (2021).

    Article  Google Scholar 

  11. van den Berg, M. et al. Health benefits of green spaces in the living environment: a systematic review of epidemiological studies. Urban For. Urban Green. 14, 806–816 (2015).

    Article  Google Scholar 

  12. Nguyen, P.-Y., Astell-Burt, T., Rahimi-Ardabili, H. & Feng, X. Green space quality and health: a systematic review. Int. J. Environ. Res. Public Health 18, 11028 (2021).

    Article  Google Scholar 

  13. De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).

    Article  Google Scholar 

  14. Diener, A. & Mudu, P. How can vegetation protect us from air pollution? A critical review on green spaces’ mitigation abilities for air-borne particles from a public health perspective—with implications for urban planning. Sci. Total Environ. 796, 148605 (2021).

    Article  CAS  Google Scholar 

  15. Ekkel, E. D. & de Vries, S. Nearby green space and human health: evaluating accessibility metrics. Landsc. Urban Plan. 157, 214–220 (2017).

    Article  Google Scholar 

  16. Dallimer, M. et al. Biodiversity and the feel-good factor: understanding associations between self-reported human well-being and species richness. BioScience 62, 47–55 (2012).

    Article  Google Scholar 

  17. Aerts, R., Honnay, O. & Van Nieuwenhuyse, A. Biodiversity and human health: mechanisms and evidence of the positive health effects of diversity in nature and green spaces. Br. Med. Bull. 127, 5–22 (2018).

    Article  Google Scholar 

  18. Brockerhoff, E. G. et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 26, 3005–3035 (2017).

    Article  Google Scholar 

  19. Haines-Young, R. & Potschin, M. in Ecosystem Ecology (eds Raffaelli, D. G. & Frid, C. L. J.) 110–139 (Cambridge Univ. Press, 2010).

  20. Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Article  Google Scholar 

  21. Marselle, M. R. et al. Pathways linking biodiversity to human health: a conceptual framework. Environ. Int. 150, 106420 (2021).

    Article  CAS  Google Scholar 

  22. Marselle, M. R. et al. Urban street tree biodiversity and antidepressant prescriptions. Sci. Rep. 10, 22445 (2020).

    Article  CAS  Google Scholar 

  23. Krayenhoff, E. S. et al. Cooling hot cities: a systematic and critical review of the numerical modelling literature. Environ. Res. Lett. 16, 053007 (2021).

    Article  Google Scholar 

  24. Han, D., Shen, H., Duan, W. & Chen, L. A review on particulate matter removal capacity by urban forests at different scales. Urban For. Urban Green. 48, 126565 (2020).

    Article  Google Scholar 

  25. Rozario, K. et al. Perceived biodiversity: is what we measure also what we see and hear? Preprint at bioRxiv https://doi.org/10.1101/2024.04.03.587905 (2024).

  26. Gillerot, L. et al. Forests are chill: the interplay between thermal comfort and mental wellbeing. Landsc. Urban Plan. 242, 104933 (2024).

    Article  Google Scholar 

  27. Rey Gozalo, G., Barrigón Morillas, J. M., Montes González, D. & Atanasio Moraga, P. Relationships among satisfaction, noise perception, and use of urban green spaces. Sci. Total Environ. 624, 438–450 (2018).

    Article  CAS  Google Scholar 

  28. Bourdin, A. et al. Forests harbor more ticks than other habitats: a meta-analysis. For. Ecol. Manag. 541, 121081 (2023).

    Article  Google Scholar 

  29. Dudek, T., Kasprzyk, I. & Dulska-Jeż, A. Forest as a place for recreation but also the source of allergenic plant pollen: to come or avoid? Eur. J. For. Res. 137, 849–862 (2018).

    Article  CAS  Google Scholar 

  30. Park, B.-J. et al. Relationship between psychological responses and physical environments in forest settings. Landsc. Urban Plan. 102, 24–32 (2011).

    Article  Google Scholar 

  31. Landuyt, D. et al. A review of Bayesian belief networks in ecosystem service modelling. Environ. Model. Softw. 46, 1–11 (2013).

    Article  Google Scholar 

  32. Gillerot, L. et al. Bayesian Belief Network file for the study "Forest biodiversity and structure modulate human health benefits and risks". Figshare https://figshare.com/s/63ac8597986bc3d81e2f (2025).

  33. Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).

    Article  CAS  Google Scholar 

  34. Gillerot, L. et al. Forest structure and composition alleviate human thermal stress. Glob. Change Biol. 28, 7340–7352 (2022).

    Article  CAS  Google Scholar 

  35. Wong, N. H., Tan, C. L., Kolokotsa, D. D. & Takebayashi, H. Greenery as a mitigation and adaptation strategy to urban heat. Nat. Rev. Earth Environ. 2, 166–181 (2021).

    Article  Google Scholar 

  36. Verheyen, K. et al. Forest canopies as nature‐based solutions to mitigate global change effects on people and nature. J. Ecol. 112, 2451–2461 (2024).

    Article  Google Scholar 

  37. Ampoorter, E. et al. Tree diversity is key for promoting the diversity and abundance of forest-associated taxa in Europe. Oikos 129, 133–146 (2020).

    Article  Google Scholar 

  38. Stojek, K., Gillerot, L. & Jaroszewicz, B. Predictors of mushroom production in the European temperate mixed deciduous forest. For. Ecol. Manag. 522, 120451 (2022).

    Article  Google Scholar 

  39. Gori, A., Nascimento, L. B., Ferrini, F., Centritto, M. & Brunetti, C. Seasonal and diurnal variation in leaf phenolics of three medicinal Mediterranean wild species: what is the best harvesting moment to obtain the richest and the most antioxidant extracts? Molecules 25, 956 (2020).

    Article  CAS  Google Scholar 

  40. Grinfeder, E. et al. Soundscape dynamics of a cold protected forest: dominance of aircraft noise. Landsc. Ecol. 37, 567–582 (2022).

    Article  Google Scholar 

  41. Schulp, C. J. E., Thuiller, W. & Verburg, P. H. Wild food in Europe: a synthesis of knowledge and data of terrestrial wild food as an ecosystem service. Ecol. Econ. 105, 292–305 (2014).

    Article  Google Scholar 

  42. Jansson, M., Fors, H., Lindgren, T. & Wiström, B. Perceived personal safety in relation to urban woodland vegetation—A review. Urban For. Urban Green. 12, 127–133 (2013).

    Article  Google Scholar 

  43. Lai, D. et al. A comprehensive review of thermal comfort studies in urban open spaces. Sci. Total Environ. 742, 140092 (2020).

    Article  CAS  Google Scholar 

  44. Steinparzer, M., Haluza, D. & Godbold, D. L. Integrating tree species identity and diversity in particulate matter adsorption. Forests 13, 481 (2022).

    Article  Google Scholar 

  45. Blondeel, H. et al. Light and warming drive forest understorey community development in different environments. Glob. Change Biol. 26, 1681–1696 (2020).

    Article  Google Scholar 

  46. Gray, J. S. Review. The ecology of ticks transmitting Lyme borreliosis. Exp. Appl. Acarol. 22, 249–258 (1998).

    Article  Google Scholar 

  47. Vanneste, T. et al. Trade-offs in biodiversity and ecosystem services between edges and interiors in European forests. Nat. Ecol. Evol. 8, 880–887 (2024).

    Article  Google Scholar 

  48. Vanroy, T. et al. The effect of forest structural complexity on tick-borne pathogens in questing ticks and small mammals. For. Ecol. Manag. 562, 121944 (2024).

    Article  Google Scholar 

  49. Bourdin, A. et al. Forest diversity reduces the prevalence of pathogens transmitted by the tick Ixodes ricinus. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2022.891908 (2022).

    Article  Google Scholar 

  50. Ostfeld, R. S. & Keesing, F. Effects of host diversity on infectious disease. Annu. Rev. Ecol. Evol. Syst. 43, 157–182 (2012).

    Article  Google Scholar 

  51. Steinparzer, M., Schaubmayr, J., Godbold, D. L. & Rewald, B. Particulate matter accumulation by tree foliage is driven by leaf habit types, urbanization- and pollution levels. Environ. Pollut. 335, 122289 (2023).

    Article  CAS  Google Scholar 

  52. Cao, Z., Zhou, J., Li, M., Huang, J. & Dou, D. Urbanites’ mental health undermined by air pollution. Nat. Sustain. 6, 470–478 (2023).

    Article  Google Scholar 

  53. Health at a Glance: Europe 2022. State of Health in the EU Cycle (Organisation for Economic Co-operation and Development, 2022).

  54. Ballester, J. et al. Heat-related mortality in Europe during the summer of 2022. Nat. Med. 29, 1857–1866 (2023).

    Article  CAS  Google Scholar 

  55. Freer-Smith, P. et al. Plantation Forests in Europe: Challenges and Opportunities (European Forest Institute, 2019); https://doi.org/10.36333/fs09

  56. Planning Improvements in Natural Resources Management: Guidelines for Using Bayesian Networks to Support the Planning and Management of Development Programmes in the Water Sector and Beyond (Centre for Ecology & Hydrology, 2001).

  57. Bratman, G. N. et al. Nature and mental health: an ecosystem service perspective. Sci. Adv. 5, eaax0903 (2019).

    Article  Google Scholar 

  58. Sohn, J. A., Saha, S. & Bauhus, J. Potential of forest thinning to mitigate drought stress: a meta-analysis. For. Ecol. Manag. 380, 261–273 (2016).

    Article  Google Scholar 

  59. Kilpatrick, A. M., Salkeld, D. J., Titcomb, G. & Hahn, M. B. Conservation of biodiversity as a strategy for improving human health and well-being. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160131 (2017).

    Article  Google Scholar 

  60. Jactel, H., Moreira, X. & Castagneyrol, B. Tree diversity and forest resistance to insect pests: patterns, mechanisms and prospects. Annu. Rev. Entomol. 66, 277–296 (2021).

    Article  CAS  Google Scholar 

  61. Baeten, L. et al. A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspect. Plant Ecol. Evol. Syst. 15, 281–291 (2013).

    Article  Google Scholar 

  62. De Groote, S. R. E. et al. Tree species identity outweighs the effects of tree species diversity and forest fragmentation on understorey diversity and composition. Plant Ecol. Evol. 150, 229–239 (2017).

    Article  Google Scholar 

  63. Paquette, A. et al. A million and more trees for science. Nat. Ecol. Evol. 2, 763–766 (2018).

    Article  Google Scholar 

  64. Nickmans, H. The Nutrition of Oak and Beech Trees along A Tree Diversity Gradient. PhD thesis, Université Catholique de Louvain (2019).

  65. Jensen, F. V. & Nielsen, T. D. Bayesian Networks and Decision Graphs (Springer, 2007).

  66. Aguilera, P. A., Fernández, A., Fernández, R., Rumí, R. & Salmerón, A. Bayesian networks in environmental modelling. Environ. Model. Softw. 26, 1376–1388 (2011).

    Article  Google Scholar 

  67. Marcot, B. G., Steventon, J. D., Sutherland, G. D. & McCann, R. K. Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation. Can. J. For. Res. 36, 3063–3074 (2006).

    Article  Google Scholar 

  68. Netica Application User’s Guide (Norsys Software Corporation, 1998).

  69. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024).

  70. Pascual, U. et al. Valuing nature’s contributions to people: the IPBES approach. Curr. Opin. Environ. Sustain. 26–27, 7–16 (2017).

    Article  Google Scholar 

  71. Uusitalo, L. Advantages and challenges of Bayesian networks in environmental modelling. Ecol. Modell. 203, 312–318 (2007).

    Article  Google Scholar 

  72. Kuhnert, P. M., Martin, T. G. & Griffiths, S. P. A guide to eliciting and using expert knowledge in Bayesian ecological models. Ecol. Lett. 13, 900–914 (2010).

    Article  Google Scholar 

  73. Chen, S. H. & Pollino, C. A. Good practice in Bayesian network modelling. Environ. Model. Softw. 37, 134–145 (2012).

    Article  Google Scholar 

  74. Rozario, K. et al. The more the merrier? Perceived forest biodiversity promotes short-term mental health and well-being—A multicentre study. People Nat. 6, 180–201 (2024).

    Article  Google Scholar 

  75. Cuentas Romero, A. G. et al. Sense of place matters: mental well-being effects of acoustic diversity differ for local and non-local forest soundscapes. Preprint at PsyArxix https://doi.org/10.31234/osf.io/yqcwp (2025).

  76. Gillerot, L., Landuyt, D., De Frenne, P., Muys, B. & Verheyen, K. Urban tree canopies drive human heat stress mitigation. Urban For. Urban Green. 92, 128192 (2024).

    Article  Google Scholar 

  77. World Atlas (GIS Geography) https://gisgeography.com/category/world-atlas/ (2024).

Download references

Acknowledgements

We thank all study participants. This research was funded by the ERA-Net BiodivERsA project Dr.FOREST, the German Research Foundation (no. 428795724), the French National Research Agency, Research Foundation-Flanders, the Austrian Science Fund and the National Science Center (project no. 2019/31/Z/NZ8/04032) as part of the 2018–2019 BiodivERsA call for research proposals. P.D.F. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC Starting Grant FORMICA 757833). D.L. was supported by a postdoctoral fellowship of Research Foundation-Flanders. T.V. was supported by a UGent GOA project (no. BOF20/GOA/009). Q.P. thanks the Walloon forest service (Service Public de Wallonie-Département de la Nature et des Forêts) for supporting the maintenance of the FORBIO-Gedinne experiment within the framework of the 5-year research programme ‘Plan Quinquennal de Recherche et de Vulgarisation Forestières’.

Author information

Authors and Affiliations

Authors

Contributions

L.G., D.L., B.M. and K.V. conceptualized the statistical approach and developed the methodology. L.G., D.L., A. Bourdin, K.R., T.S., M.S., K.S., T.V., A.G.C.R., S.M., R.R.Y.O., A. Bonn, H.B., D.G., D.H., H.J., B.J., M.R.M., Q.P., M.S.L., B.M. and K.V. developed the outlines of the conceptual models (phase I). L.G., D.L., A. Bourdin, K.R., T.S., M.S., K.S., T.V., A.G.C.R., S.M., R.R.Y.O. shared and prepared the empirical data, quantified the submodels and validated the behaviour model (phases II and III). L.G. and D.L. conducted the data analyses. L.G. wrote the original manuscript draft and all authors reviewed the manuscript. D.L., P.D.F., B.M. and K.V. supervised the study. S.M., D.B., A. Bonn, H.B., D.G., D.H., H.J., B.J., M.R.M., Q.P., M.S.L., B.M. and K.V. obtained the funding and administered the project. M.S.L. and D.H. coordinated the project.

Corresponding author

Correspondence to Loïc Gillerot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Brendan Fisher and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods and Fig. 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gillerot, L., Landuyt, D., Bourdin, A. et al. Forest biodiversity and structure modulate human health benefits and risks. Nat Sustain 8, 485–497 (2025). https://doi.org/10.1038/s41893-025-01547-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-025-01547-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing