Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sustainable all-solid elastocaloric cooler enabled by non-reciprocal heat transfer

Abstract

Non-reciprocal heat transfer has the potential to shape the landscape of high-performance solid-state elastocaloric cooling technology as an eco-friendly alternative of traditional vapour-compression refrigeration with environmental issues. However, neither the working principle nor the technical route of combining non-reciprocal heat transfer with solid-state caloric cooling system is clear. Here we establish a framework for the development of non-reciprocal heat-transfer-enabled solid-state elastocaloric devices. We first illustrate theoretically that the thermal rectification ratio of non-reciprocal heat transfer unit is strongly correlated with the elastocaloric cooling performance. We further build an all-solid-state elastocaloric cooler prototype incorporated with a meta-material designed non-reciprocal heat transfer unit for efficient heat transfer and stable operations. With a thermal rectification ratio of 6.5, the cooler exhibits cooling power of 174.8 mW corresponding to a cooling heat flux of 242.8 mW cm−2. The cooler with non-reciprocal heat transfer units survives a long device-level operational fatigue life of over 2 million cycles without failure under the buckling-resistant compressive loading. Our work suggests new space for the design of next-generation cooling systems embracing sustainability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptualization of non-reciprocal heat transfer in a caloric cooling system.
Fig. 2: Experimental prototype of the non-reciprocal heat-transfer-enabled elastocaloric cooler system.
Fig. 3: Cooling performance of the non-reciprocal heat-transfer-enabled elastocaloric cooler.
Fig. 4: Device-level fatigue performance of the non-reciprocal heat-transfer-enabled elastocaloric cooler.

Similar content being viewed by others

Data availability

All data supporting this study are available in the main text or the supplementary materials. Source data are provided with this paper.

References

  1. Li, B., Wang, L. & Casati, G. Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004).

    Article  Google Scholar 

  2. Peyrard, M. The design of a thermal rectifier. Europhys. Lett. 76, 49 (2006).

    Article  CAS  Google Scholar 

  3. Li, Y., Li, J., Qi, M., Qiu, C.-W. & Chen, H. Diffusive nonreciprocity and thermal diode. Phys. Rev. B 103, 014307 (2021).

    Article  CAS  Google Scholar 

  4. Sklan, S. R. & Li, B. A unified approach to nonlinear transformation materials. Sci. Rep. 8, 4436 (2018).

    Article  Google Scholar 

  5. Sklan, S. R. & Li, B. Thermal metamaterials: functions and prospects. Natl Sci. Rev. 5, 138–141 (2018).

    Article  Google Scholar 

  6. Shen, X., Li, Y., Jiang, C., Ni, Y. & Huang, J. Thermal cloak-concentrator. Appl. Phys. Lett. 109, 031907 (2016).

    Article  Google Scholar 

  7. Shen, X. et al. Achieving adjustable elasticity with non-affine to affine transition. Nat. Mater. 20, 1635–1642 (2021).

    Article  CAS  Google Scholar 

  8. Li, Y. et al. Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes. Phys. Rev. Lett. 115, 195503 (2015).

    Article  Google Scholar 

  9. Du, T. et al. Wide range continuously tunable and fast thermal switching based on compressible graphene composite foams. Nat. Commun. 12, 4915 (2021).

    Article  CAS  Google Scholar 

  10. Fan, C., Gao, Y. & Huang, J. Shaped graded materials with an apparent negative thermal conductivity. Appl. Phys. Lett. 92, 251907 (2008).

    Article  Google Scholar 

  11. Narayana, S. & Sato, Y. Heat flux manipulation with engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012).

    Article  Google Scholar 

  12. Schittny, R., Kadic, M., Guenneau, S. & Wegener, M. Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110, 195901 (2013).

    Article  Google Scholar 

  13. William, G., Robert, Z., Jim, Y. & Johnson, C. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies (Navigant Consulting, 2014).

  14. Bonnot, E., Romero, R., Mañosa, L., Vives, E. & Planes, A. Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys. Rev. Lett. 100, 125901 (2008).

    Article  Google Scholar 

  15. Mañosa, L., Planes, A. & Acet, M. Advanced materials for solid-state refrigeration. J. Mater. Chem. A 1, 4925–4936 (2013).

    Article  Google Scholar 

  16. Moya, X., Kar-Narayan, S. & Mathur, N. D. Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439–450 (2014).

    Article  CAS  Google Scholar 

  17. Moya, X. & Mathur, N. D. Caloric materials for cooling and heating. Science 370, 797–803 (2020).

    Article  CAS  Google Scholar 

  18. Gottschall, T. et al. Making a cool choice: the materials library of magnetic refrigeration. Adv. Energy Mater. 9, 1901322 (2019).

    Article  Google Scholar 

  19. Kitanovski, A. Energy applications of magnetocaloric materials. Adv. Energy Mater. 10, 1903741 (2020).

    Article  CAS  Google Scholar 

  20. Ma, R. et al. Highly efficient electrocaloric cooling with electrostatic actuation. Science 357, 1130–1134 (2017).

    Article  CAS  Google Scholar 

  21. Qian, X. et al. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature 600, 664–669 (2021).

    Article  CAS  Google Scholar 

  22. Mañosa, L. & Planes, A. Materials with giant mechanocaloric effects: cooling by strength. Adv. Mater. 29, 1603607 (2017).

    Article  Google Scholar 

  23. Tušek, J. et al. The elastocaloric effect: a way to cool efficiently. Adv. Energy Mater. 5, 1500361 (2015).

    Article  Google Scholar 

  24. Greibich, F. et al. Elastocaloric heat pump with specific cooling power of 20.9 W g–1 exploiting snap-through instability and strain-induced crystallization. Nat. Energy 6, 260–267 (2021).

    Article  CAS  Google Scholar 

  25. Hou, H., Qian, S. & Takeuchi, I. Materials, physics and systems for multicaloric cooling. Nat. Rev. Mater. 7, 633–652 (2022).

    Article  Google Scholar 

  26. Cui, J. et al. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Appl. Phys. Lett. 101, 073904 (2012).

    Article  Google Scholar 

  27. Hou, H. et al. Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing. Science 366, 1116–1121 (2019).

    Article  CAS  Google Scholar 

  28. Lin, H., Hua, P. & Sun, Q. Effects of grain size and partial amorphization on elastocaloric cooling performance of nanostructured NiTi. Scr. Mater. 209, 114371 (2022).

    Article  CAS  Google Scholar 

  29. Wang, R. et al. Torsional refrigeration by twisted, coiled, and supercoiled fibers. Science 366, 216–221 (2019).

    Article  CAS  Google Scholar 

  30. Mañosa, L. et al. Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nat. Mater. 9, 478–481 (2010).

    Article  Google Scholar 

  31. Qian, S., Ling, J., Hwang, Y., Radermacher, R. & Takeuchi, I. Thermodynamics cycle analysis and numerical modeling of thermoelastic cooling systems. Int. J. Refrig. 56, 65–80 (2015).

    Article  CAS  Google Scholar 

  32. Tušek, J. et al. A regenerative elastocaloric heat pump. Nat. Energy 1, 16134 (2016).

    Article  Google Scholar 

  33. Bruederlin, F., Ossmer, H., Wendler, F., Miyazaki, S. & Kohl, M. SMA foil-based elastocaloric cooling: from material behavior to device engineering. J. Phys. D 50, 424003 (2017).

    Article  Google Scholar 

  34. Sharar, D. J., Radice, J., Warzoha, R., Hanrahan, B. & Smith, A. Low-force elastocaloric refrigeration via bending. Appl. Phys. Lett. 118, 184103 (2021).

    Article  CAS  Google Scholar 

  35. Zhang, J., Zhu, Y., Cheng, S., Yao, S. & Sun, Q. Enhancing cooling performance of NiTi elastocaloric tube refrigerant via internal grooving. Appl. Therm. Eng. 213, 118657 (2022).

    Article  CAS  Google Scholar 

  36. Li, X., Hua, P. & Sun, Q. Continuous and efficient elastocaloric air cooling by coil-bending. Nat. Commun. 14, 7982 (2023).

    Article  CAS  Google Scholar 

  37. Zhang, J., Zhu, Y., Cheng, S., Yao, S. & Sun, Q. Effect of inactive section on cooling performance of compressive elastocaloric refrigeration prototype. Appl. Energy 351, 121839 (2023).

    Article  CAS  Google Scholar 

  38. Cirillo, L., Greco, A., Masselli, C. & Qian, S. The Italian elastocaloric rotary air conditioner: numerical modelling for optimal design and enhanced energy performances. Therm. Sci. Eng. Prog. 37, 101605 (2023).

    Article  Google Scholar 

  39. Ahčin, Ž. et al. High-performance cooling and heat pumping based on fatigue-resistant elastocaloric effect in compression. Joule 6, 2338–2357 (2022).

    Article  Google Scholar 

  40. Qian, S. et al. High-performance multimode elastocaloric cooling system. Science 380, 722–727 (2023).

    Article  CAS  Google Scholar 

  41. Zhang, J., Zhu, Y., Yao, S. & Sun, Q. Highly efficient grooved NiTi tube refrigerants for compressive elastocaloric cooling. Appl. Therm. Eng. 228, 120439 (2023).

    Article  CAS  Google Scholar 

  42. Sebald, G. et al. High-performance polymer-based regenerative elastocaloric cooler. Appl. Therm. Eng. 223, 120016 (2023).

    Article  Google Scholar 

  43. Snodgrass, R. & Erickson, D. A multistage elastocaloric refrigerator and heat pump with 28 K temperature span. Sci. Rep. 9, 18532 (2019).

    Article  CAS  Google Scholar 

  44. Schmidt, M., Schütze, A. & Seelecke, S. in Smart Materials, Adaptive Structures and Intelligent Systems V002T04A013 (American Society of Mechanical Engineers, 2014).

  45. Ossmer, H., Miyazaki, S. & Kohl, M. In 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) 726–729 (IEEE, 2015).

  46. Schmidt, M., Schütze, A. & Seelecke, S. Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes. Int. J. Refrig. 54, 88–97 (2015).

    Article  CAS  Google Scholar 

  47. Ossmer, H., Chluba, C., Kauffmann-Weiss, S., Quandt, E. & Kohl, M. TiNi-based films for elastocaloric microcooling—fatigue life and device performance. APL Mater. 4, 064102 (2016).

    Article  Google Scholar 

  48. Ossmer, H. et al. Energy-efficient miniature-scale heat pumping based on shape memory alloys. Smart Mater. Struct. 25, 085037 (2016).

    Article  Google Scholar 

  49. Ulpiani, G. et al. Upscaling of SMA film-based elastocaloric cooling. Appl. Therm. Eng. 180, 115867 (2020).

    Article  CAS  Google Scholar 

  50. Ludwig, C., Leutner, J., Prucker, O., Rühe, J. & Kohl, M. Miniature-scale elastocaloric cooling by rubber-based foils. J. Phys. Energy 6, 015009 (2024).

    Article  CAS  Google Scholar 

  51. Yao, S. et al. Efficient roller-driven elastocaloric refrigerator. Nat. Commun. 15, 7203 (2024).

    Article  CAS  Google Scholar 

  52. Chen, J., Xu, X., Zhou, J. & Li, B. Interfacial thermal resistance: past, present, and future. Rev. Mod. Phys. 94, 025002 (2022).

    Article  CAS  Google Scholar 

  53. Li, N. et al. Colloquium: phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045 (2012).

    Article  Google Scholar 

  54. Ding, Y., Zhu, G., Shen, X., Bai, X. & Li, B. Advances of phononics in 2012–2022. Chin. Phys. B 31, 126301 (2022).

    Article  Google Scholar 

  55. Klinar, K. & Kitanovski, A. Thermal control elements for caloric energy conversion. Renew. Sust. Energy Rev. 118, 109571 (2020).

    Article  Google Scholar 

  56. Silva, D., Bordalo, B., Pereira, A., Ventura, J. & Araújo, J. Solid state magnetic refrigerator. Appl. Energy 93, 570–574 (2012).

    Article  CAS  Google Scholar 

  57. Liang, D. et al. Ultrahigh cycle fatigue of nanocrystalline NiTi tubes for elastocaloric cooling. Appl. Mater. Today 26, 101377 (2022).

    Article  Google Scholar 

  58. Wang, Y. et al. A high-performance solid-state electrocaloric cooling system. Science 370, 129–133 (2020).

    Article  CAS  Google Scholar 

  59. Meng, Y. et al. A cascade electrocaloric cooling device for large temperature lift. Nat. Energy 5, 996–1002 (2020).

    Article  Google Scholar 

  60. Bo, Y. et al. Electrostatic actuating double‐unit electrocaloric cooling device with high efficiency. Adv. Energy Mater. 11, 2003771 (2021).

    Article  CAS  Google Scholar 

  61. Kang, X., Jia, S., Peng, J., Yu, H. & Zhou, X. Electromagnetic-driven electrocaloric cooling device based on ternary ferroelectric composites. Compos. B 227, 109391 (2021).

    Article  CAS  Google Scholar 

  62. Li, M. et al. Thermal management of chips by a device prototype using synergistic effects of 3-D heat-conductive network and electrocaloric refrigeration. Nat. Commun. 13, 5849 (2022).

    Article  CAS  Google Scholar 

  63. Chen, M., Zhang, J., Shen, X., Zhu, G. & Li, B. Metamaterials based on solid composites enable continuous and tunable thermal conductivity anisotropy for thermal management applications. Device 2, 100500 (2024).

    Article  Google Scholar 

  64. Liu, C. et al. Low voltage-driven high-performance thermal switching in antiferroelectric PbZrO3 thin films. Science 382, 1265–1269 (2023).

    Article  CAS  Google Scholar 

  65. Swoboda, T., Klinar, K., Yalamarthy, A. S., Kitanovski, A. & Muñoz Rojo, M. Solid‐state thermal control devices. Adv. Electron. Mater. 7, 2000625 (2021).

    Article  CAS  Google Scholar 

  66. Zhang, G. et al. Giant low-field actuated caloric effects in a textured Ni43Mn47Sn10 alloy. Scr. Mater. 201, 113947 (2021).

    Article  CAS  Google Scholar 

  67. Xiang, H. et al. Large low-stress elastocaloric effect in Ti-Zr-Cr-Sn. Scr. Mater. 244, 116002 (2024).

    Article  CAS  Google Scholar 

  68. Zhang, J., Cheng, S. & Sun, Q. Roller-cam-driven compressive elastocaloric device with high cooling power density. Device 3, 100677 (2025).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (project numbers 52250191 to B.L. and 12205138 to X.S.), Guangdong Basic and Applied Basic Research Foundation (project numbers 2025B1515020077 to X.S., 2024A1515030139 to X.S. and 2023A1515110651 to M.C.) and Shenzhen Science and Technology Innovation Committee (project number JCYJ20220530113206015 to X.S.). We thank H. Lin and X. Li from Hong Kong University of Science and Technology for the assistance of elastocaloric materials preparation.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. and M.C. contributed equally to this work. J.Z., B.L. and G.Z. conceived the idea. J.Z., M.C. and X.S. designed the non-reciprocal heat transfer unit. J.Z. performed the numerical analysis. M.C. performed the thermal conductivity test of the non-reciprocal heat transfer unit. J.Z. developed the non-reciprocal heat transfer unit gated elastocaloric cooler system. J.Z., W.L., B.W. and T.L. characterized the elastocaloric materials property. J.Z. designed and implemented the cooling experiments. J.Z. analysed the experimental data and organized the figures. J.Z. drafted the paper and prepared the supplementary materials. All authors discussed the results and reviewed the paper. X.S., B.L. and G.Z. supervised the research project.

Corresponding authors

Correspondence to Xiangying Shen, Baowen Li or Guimei Zhu.

Ethics declarations

Competing interests

Authors J.Z., M.C., X.S., G.Z. and B.L. have filed a China provisional patent application (number 202311010324.9) based on the experimental cooler design in this work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Suxin Qian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Figs. 1–23 and Tables 1–4.

Reporting Summary

Supplementary Video 1

Demonstration of the operation of the non-reciprocal heat transfer unit gated elastocaloric cooler.

Supplementary Video 2

Demonstration of the temperature variation of heat sink/source in the operation of our elastocaloric cooler captured by an infrared camera.

Source data

Source Data Fig. 1

Original data for plot in Fig. 1.

Source Data Fig. 2

Original data for plot in Fig. 2.

Source Data Fig. 3

Original data for plot in Fig. 3.

Source Data Fig. 4

Original data for plot in Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Chen, M., Luo, W. et al. Sustainable all-solid elastocaloric cooler enabled by non-reciprocal heat transfer. Nat Sustain 8, 651–660 (2025). https://doi.org/10.1038/s41893-025-01552-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-025-01552-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing