Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective and sustainable separation of hydrocarbons from crude oil via molecular sieve

Abstract

The sustainable separation of hydrocarbons from crude oil is critical for reducing energy consumption and carbon emissions in the chemical industry. Current methods are energy intensive and do not allow for isolation of specific hydrocarbons due to overlapping physicochemical properties and molecular complexities in crude oil. Here we introduce an energy-efficient molecular sieving strategy using cucurbit[7]uril (CB[7]) aqueous solution to directly extract cyclohexane (CH) from crude oil. CB[7] enables efficient CH separation under ambient and harsh conditions through shape- and size-selective binding with an ultrahigh affinity (2.5 × 109 M−1). Industrial validation shows >99% CH purity from azeotropic benzene mixtures and crude distillates and achieves 57.4–82.4% energy savings compared with current industrial methods. By demonstrating the scalability and robustness of CB[7]-based separations, this work highlights the potential of molecular sieves for sustainable, cost-effective hydrocarbon recovery from crude oil, paving the way for large-scale, sustainable hydrocarbon purification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crude oil separations.
Fig. 2: Separation of crude oil through liquid–liquid extraction.
Fig. 3: Relative ratios of hydrocarbons and energy consumption for the separation of industrial samples.
Fig. 4: Host–guest complexation between hydrocarbons and CB[7].
Fig. 5: Single-crystal structures.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and its Supplementary Information. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers 2099397-2099400. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Source data are provided with this paper.

References

  1. Van der Hoeven, M., Kobayashi, Y. & Diercks, R. Technology Roadmap: Energy and GHG Reductions in the Chemical Industry via Catalytic Processes (International Energy Agency, 2013).

  2. Abergel, T. et al. Energy Technology Perspectives 2017: Catalysing Energy Technology Transformations (OECD Publishing, 2017).

  3. Levi, P. G. & Cullen, J. M. Mapping global flows of chemicals: from fossil fuel feedstocks to chemical products. Environ. Sci. Technol. 52, 1725–1734 (2018).

    Article  CAS  Google Scholar 

  4. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Article  Google Scholar 

  5. Yadav, V. G., Yadav, G. D. & Patankar, S. C. The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-à-vis sustainability and the environment. Clean. Technol. Environ. Policy 22, 1757–1774 (2020).

    Article  Google Scholar 

  6. Tullo, A. H. Why the future of oil is in chemicals, not fuels. Chem. Eng. News 97, 26–29 (2019).

    Google Scholar 

  7. Thompson, K. A. et al. N-Aryl–linked spirocyclic polymers for membrane separations of complex hydrocarbon mixtures. Science 369, 310–315 (2020).

    Article  CAS  Google Scholar 

  8. Chisca, S. et al. Polytriazole membranes with ultrathin tunable selective layer for crude oil fractionation. Science 376, 1105–1110 (2022).

    Article  CAS  Google Scholar 

  9. Li, S. et al. Hydrophobic polyamide nanofilms provide rapid transport for crude oil separation. Science 377, 1555–1561 (2022).

    Article  CAS  Google Scholar 

  10. Li, J.-R., Sculley, J. & Zhou, H.-C. Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).

    Article  CAS  Google Scholar 

  11. Zhao, X., Wang, Y., Li, D. S., Bu, X. & Feng, P. Metal–organic frameworks for separation. Adv. Mater. 30, 1705189 (2018).

    Article  Google Scholar 

  12. Bloch, E. D. et al. Hydrocarbon separations in a metal–organic framework with open iron (II) coordination sites. Science 335, 1606–1610 (2012).

    Article  CAS  Google Scholar 

  13. Liao, P.-Q. et al. Controlling guest conformation for efficient purification of butadiene. Science 356, 1193–1196 (2017).

    Article  CAS  Google Scholar 

  14. Cadiau, A., Adil, K., Bhatt, P., Belmabkhout, Y. & Eddaoudi, M. A metal-organic framework–based splitter for separating propylene from propane. Science 353, 137–140 (2016).

    Article  CAS  Google Scholar 

  15. Cui, J. et al. A molecular sieve with ultrafast adsorption kinetics for propylene separation. Science 383, 179–183 (2024).

    Article  CAS  Google Scholar 

  16. Chen, G. et al. Solid-solvent processing of ultrathin, highly loaded mixed-matrix membrane for gas separation. Science 381, 1350–1356 (2023).

    Article  CAS  Google Scholar 

  17. Tan, X. et al. Truly combining the advantages of polymeric and zeolite membranes for gas separations. Science 378, 1189–1194 (2022).

    Article  CAS  Google Scholar 

  18. Xu, L.-H. et al. Highly flexible and superhydrophobic MOF nanosheet membrane for ultrafast alcohol-water separation. Science 378, 308–313 (2022).

    Article  CAS  Google Scholar 

  19. Lai, H. W. et al. Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations. Science 375, 1390–1392 (2022).

    Article  CAS  Google Scholar 

  20. Chen, K.-J. et al. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. Science 366, 241–246 (2019).

    Article  CAS  Google Scholar 

  21. Li, L. et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science 362, 443–446 (2018).

    Article  CAS  Google Scholar 

  22. Chai, Y. et al. Control of zeolite pore interior for chemoselective alkyne/olefin separations. Science 368, 1002–1006 (2020).

    Article  CAS  Google Scholar 

  23. Lin, J. Y. Molecular sieves for gas separation. Science 353, 121–122 (2016).

    Article  CAS  Google Scholar 

  24. Wang, H. et al. Large cages of zeolitic imidazolate frameworks. Acc. Chem. Res. 55, 707–721 (2022).

    Article  CAS  Google Scholar 

  25. Liu, M. et al. Barely porous organic cages for hydrogen isotope separation. Science 366, 613–620 (2019).

    Article  CAS  Google Scholar 

  26. Idrees, K. B. et al. Robust carborane-based metal–organic frameworks for hexane separation. J. Am. Chem. Soc. 145, 23433–23441 (2023).

    Article  CAS  Google Scholar 

  27. Li, J.-H., Chen, J.-X., Lin, R.-B. & Chen, X.-M. Recent progresses on metal–organic frameworks for separation of gaseous hydrocarbons. Mater. Chem. Front. 7, 5693–5730 (2023).

    Article  CAS  Google Scholar 

  28. Xie, F., Yu, L., Wang, H. & Li, J. Metal–organic frameworks for C6 alkane separation. Angew. Chem. 135, e202300722 (2023).

    Article  Google Scholar 

  29. Wang, Y., Ban, Y., Hu, Z. & Yang, W. Energy-efficient extraction of linear alkanes from various isomers using structured metal–organic framework membrane. Nat. Commun. 14, 6617 (2023).

    Article  CAS  Google Scholar 

  30. Katsoulidis, A. P. et al. Chemical control of structure and guest uptake by a conformationally mobile porous material. Nature 565, 213–217 (2019).

    Article  CAS  Google Scholar 

  31. Yang, L. et al. Energy-efficient separation alternatives: metal–organic frameworks and membranes for hydrocarbon separation. Chem. Soc. Rev. 49, 5359–5406 (2020).

    Article  CAS  Google Scholar 

  32. Cui, W. G., Hu, T. L. & Bu, X. H. Metal–organic framework materials for the separation and purification of light hydrocarbons. Adv. Mater. 32, 1806445 (2020).

    Article  CAS  Google Scholar 

  33. Zhang, Z. et al. Metal-organic frameworks for C6–C8 hydrocarbon separations. EnergyChem 3, 100057 (2021).

    Article  CAS  Google Scholar 

  34. Zeng, H. et al. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures. Nature 595, 542–548 (2021).

    Article  CAS  Google Scholar 

  35. Zhu, X. et al. Selective molecular sieving of chloro and bromotoluene isomers by trianglimine macrocycle. Chem. Mater. 35, 9160–9166 (2023).

    Article  CAS  Google Scholar 

  36. Zhang, G. et al. Adsorptive molecular sieving of aromatic hydrocarbons over cyclic aliphatic hydrocarbons via an intrinsic/extrinsic approach. J. Mater. Chem. A 12, 6875–6879 (2024).

    Article  CAS  Google Scholar 

  37. Moosa, B. et al. A polymorphic azobenzene cage for energy-efficient and highly selective p-xylene separation. Angew. Chem. Int. Ed. 59, 21367–21371 (2020).

    Article  CAS  Google Scholar 

  38. Zhang, G. et al. Intrinsically porous molecular materials (IPMs) for natural gas and benzene derivatives separation. Acc. Chem. Res. 54, 155–168 (2021).

    Article  Google Scholar 

  39. Jasra, R. & Bhat, S. Thermal desorption of normal paraffins from zeolite 5A. Zeolites 7, 127–130 (1987).

    Article  CAS  Google Scholar 

  40. Lu, X. & Isaacs, L. Uptake of hydrocarbons in aqueous solution by encapsulation in acyclic cucurbit [n] uril‐type molecular containers. Angew. Chem. Int. Ed. 55, 8076–8080 (2016).

    Article  CAS  Google Scholar 

  41. Sharma, M., Sharma, P. & Kim, J. N. Solvent extraction of aromatic components from petroleum derived fuels: a perspective review. RSC Adv. 3, 10103–10126 (2013).

    Article  CAS  Google Scholar 

  42. Balogh, K., Szaniszló, N. & H-Otta, K. Can cyclodextrins really improve the selectivity of extraction of BTEX compounds? J. Incl. Phenom. Macrocycl. Chem. 57, 457–462 (2007).

    Article  CAS  Google Scholar 

  43. Lee, J. W., Samal, S., Selvapalam, N., Kim, H.-J. & Kim, K. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc. Chem. Res. 36, 621–630 (2003).

    Article  CAS  Google Scholar 

  44. Barrow, S. J. et al. Cucurbituril-based molecular recognition. Chem. Rev. 115, 12320–12406 (2015).

    Article  CAS  Google Scholar 

  45. Zhang, G. et al. Shape-induced selective separation of ortho-substituted benzene isomers enabled by cucurbit [7] uril host macrocycles. Chem 6, 1082–1096 (2020).

    Article  CAS  Google Scholar 

  46. Florea, M. & Nau, W. M. Strong binding of hydrocarbons to cucurbituril probed by fluorescent dye displacement: a supramolecular gas-sensing ensemble. Angew. Chem. Int. Ed. 40, 9338–9342 (2011).

    Article  Google Scholar 

  47. Assaf, K. I. et al. Hydrophobe challenge: a joint experimental and computational study on the host–guest binding of hydrocarbons to cucurbiturils, allowing explicit evaluation of guest hydration free-energy contributions. J. Phys. Chem. B 121, 11144–11162 (2017).

    Article  CAS  Google Scholar 

  48. Grand View Research. Cyclohexane Market Analysis by Application (Adipic Acid, Caprolactam), by End-Use (Nylon 6, Nylon 66), Competitive Landscape, and Segment Forecasts, 2018–2025 (Grand View Research, 2017).

  49. Cui, P.-F. et al. Highly selective separation of benzene and cyclohexane in a spatially confined carborane metallacage. J. Am. Chem. Soc. 144, 6558–6565 (2022).

    Article  CAS  Google Scholar 

  50. Garcia Villaluenga, J. P. & Tabe-Mohammadi, A. A. Review on the separation of benzene/cyclohexane mixtures by pervaporation processes. J. Membr. Sci. 169, 159–174 (2000).

    Article  CAS  Google Scholar 

  51. Mukherjee, S. et al. Advances in adsorptive separation of benzene and cyclohexane by metal-organic framework adsorbents. Coord. Chem. Rev. 437, 213852 (2021).

    Article  CAS  Google Scholar 

  52. Moosa, B. et al. Fluorine‐boosted kinetic and selective molecular sieving of C6 derivatives. Angew. Chem. Int. Ed. 62, e202311555 (2023).

    Article  CAS  Google Scholar 

  53. Yao, H. et al. Adsorptive separation of benzene, cyclohexene, and cyclohexane by amorphous nonporous amide naphthotube solids. Angew. Chem. 132, 20117–20122 (2020).

    Article  Google Scholar 

  54. Han, Y. et al. Control of the pore chemistry in metal-organic frameworks for efficient adsorption of benzene and separation of benzene/cyclohexane. Chem 9, 739–754 (2023).

    Article  CAS  Google Scholar 

  55. Natraj, A. et al. Single-crystalline imine-linked two-dimensional covalent organic frameworks separate benzene and cyclohexane efficiently. J. Am. Chem. Soc. 144, 19813–19824 (2022).

    Article  CAS  Google Scholar 

  56. Yang, W. et al. Tiara [5] arenes: synthesis, solid‐state conformational studies, host–guest properties, and application as nonporous adaptive crystals. Angew. Chem. Int. Ed. 59, 3994–3999 (2020).

    Article  CAS  Google Scholar 

  57. Macreadie, L. K. et al. Enhancing multicomponent metal–organic frameworks for low pressure liquid organic hydrogen carrier separations. Angew. Chem. Int. Ed. 59, 6090–6098 (2020).

    Article  CAS  Google Scholar 

  58. Chen, C. et al. A noncovalent π‐stacked porous organic molecular framework for selective separation of aromatics and cyclic aliphatics. Angew. Chem. Int. Ed. 61, e202201646 (2022).

    Article  CAS  Google Scholar 

  59. Zhao, X. et al. One‐pot and shape‐controlled synthesis of organic cages. Angew. Chem. Int. Ed. 60, 17904–17909 (2021).

    Article  CAS  Google Scholar 

  60. Xie, F. & Li, J. Complete separation of benzene–cyclohexene–cyclohexane mixtures via temperature-dependent molecular sieving by a flexible chain-like coordination polymer. Nat. Commun. 15, 2240 (2024).

    Article  CAS  Google Scholar 

  61. Nurunnabi, M. Transformation from an oil-based economy to a knowledge-based economy in Saudi Arabia: the direction of Saudi vision 2030. J. Knowl. Econ. 8, 536–564 (2017).

    Article  Google Scholar 

  62. Lagona, J., Mukhopadhyay, P., Chakrabarti, S. & Isaacs, L. The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005).

    Article  CAS  Google Scholar 

  63. Cier, H. & Waddell, M. Producing high purity cyclohexane. Ind. Eng. Chem. 51, 259–261 (1959).

    Article  CAS  Google Scholar 

  64. Tripathi, R. P., Sagar, J. M. & Gulati, I. B. High purity cyclohexane from petroleum streams by extractive distillation. J. Appl. Chem. Biotechnol. 23, 581–588 (1973).

    Article  CAS  Google Scholar 

  65. Day, A. et al. Controlling factors in the synthesis of cucurbituril and its homologues. J. Org. Chem. 66, 8094–8100 (2001).

    Article  CAS  Google Scholar 

  66. Zhang, G. et al. Industrial separation challenges: how does supramolecular chemistry help? J. Am. Chem. Soc. 145, 19143–19163 (2023).

    Article  CAS  Google Scholar 

  67. Wang, Z. et al. Efficient liquid–liquid extraction of benzene from its mixture with cyclohexane by utilizing hyperbranched polymeric ammoniums salts. Ind. Eng. Chem. Res. 58, 15321–15331 (2019).

    Article  CAS  Google Scholar 

  68. Marongiu, B. et al. A comparative study of thermodynamic properties of binary mixtures containing dimethylsulfoxide. J. Therm. Anal. Calorim. 90, 909–922 (2007).

    Article  CAS  Google Scholar 

  69. Liu, Z., Liu, S. & Li, Z. Benzene selective hydrogenation thermodynamics, heterogeneous catalytic kinetics catalysis mechanism and scientific essence. In Catalytic Technology for Selective Hydrogenation of Benzene to Cyclohexene 33–57 (Springer, 2020).

  70. Mecozzi, S. & Rebek, J. Jr The 55% solution: a formula for molecular recognition in the liquid state. Chem. Eur. J. 4, 1016–1022 (1998).

    Article  CAS  Google Scholar 

  71. Biedermann, F. et al. Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit [n] urils. J. Am. Chem. Soc. 134, 15318–15323 (2012).

    Article  CAS  Google Scholar 

  72. Raeva, V. M., Anisimov, A. V. & Ryzhkin, D. A. Calculation of vaporization enthalpies of a benzene–cyclohexane system. Russ. Chem. Bull. 70, 715–721 (2021).

    Article  CAS  Google Scholar 

  73. Ponce, G. H. S. F. et al. Using an internally heat-integrated distillation column for ethanol–water separation for fuel applications. Chem. Eng. Res. Des. 95, 55–63 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.M.K. acknowledges support from the King Abdullah University of Science and Technology (KAUST; grant OSR-2019-CRG8-4032). G.Z. acknowledges support from the Jiangsu Specially Appointed Professor Program. K.K. acknowledges support from the Institute for Basic Science (IBS-R007-D1).

Author information

Authors and Affiliations

Authors

Contributions

G.Z. and N.M.K. conceived and designed the research project. G.Z. performed separation experiments, NMR analysis, 1D GC-MS characterization and host–guest complexation studies. I.K. conducted crystallization experiments and single-crystal X-ray diffraction (SCXRD) analysis. D.R.B. synthesized the cucurbituril homologues. L.O.A. analysed the crystallographic data. W.L. performed molecular dynamics simulations. A.C. conducted the GC-MS measurements. V.G.S. carried out the 2D GC × GC analysis. A.-H.E. performed NMR characterization. K.K. supervised crystallographic studies and molecular design. All authors discussed the results and contributed to manuscript preparation. G.Z. wrote the original draft. B.A.M., R.D.M., W.L., N.M.K. and K.K. reviewed and edited the manuscript. N.M.K. acquired funding and supervised the project.

Corresponding authors

Correspondence to Kimoon Kim or Niveen M. Khashab.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Razi Epsztein, Jian-Rong Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–51, Tables 1–4 and Discussion.

Reporting Summary

Source data

Source Data Fig. 2

Unprocessed NMR data, GC-MS and separation results.

Source Data Fig. 3

Separation results and energy cost calculation results.

Source Data Fig. 4

Binding constant results.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Kim, I., Alimi, L.O. et al. Selective and sustainable separation of hydrocarbons from crude oil via molecular sieve. Nat Sustain 8, 784–792 (2025). https://doi.org/10.1038/s41893-025-01563-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-025-01563-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing