Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bipolar electrochemical uranium extraction from seawater with ultra-low cell voltage

Abstract

Efficient uranium extraction from seawater has the potential to secure an abundant and reliable supply of nuclear fuel, providing affordable energy with minimized carbon emissions. Among the many extraction methods, the electrochemical route has emerged as a promising choice owing to its fast kinetics and materials regeneration. The major challenges facing this technology, however, lie in its high energy consumption, low extraction efficiency and poor selectivity. Here we show a bipolar electrochemical uranium extraction (EUE) system that combines cathodic direct electroreduction of uranium species and electrochemistry-assisted indirect uranium reduction at the anode. The EUE device operates at an ultra-low voltage of merely 0.6 V, exhibiting an efficiency of ~100% for sources with a wide range of uranium concentrations (1–100 ppm). This bipolar EUE system in natural seawater displays excellent uranium selectivity (above 85.3%), long-term stability (45 cycles), low energy consumption (1,944 kWh kg−1 U) and cost advantage (US$83.2 kg−1 U). This work opens an avenue to the electrochemical system design for sustainable recycling of different waste resources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic illustration of the conventional and bipolar EUE methods.
Fig. 2: Electrochemical uranium extraction with a bipolar system.
Fig. 3: The reaction mechanism at both the anode and the cathode.
Fig. 4: Bipolar EUE system process and its performance.
Fig. 5: The uranium extraction performance in different solutions.
Fig. 6: The uranium extraction performance in seawater.

Similar content being viewed by others

Data availability

All data are available within the Article and its Supplementary Information. Source data are provided with this paper.

References

  1. Yang, L. et al. Bioinspired hierarchical porous membrane for efficient uranium extraction from seawater. Nat. Sustain. 5, 71–80 (2021).

    Article  Google Scholar 

  2. Xie, Y. et al. Uranium extraction from seawater: material design, emerging technologies and marine engineering. Chem. Soc. Rev. 52, 97–162 (2023).

    Article  CAS  Google Scholar 

  3. Ye, Y. et al. Spontaneous electrochemical uranium extraction from wastewater with net electrical energy production. Nat. Water 1, 887–898 (2023).

    Article  CAS  Google Scholar 

  4. Gao, P. et al. Ultra-highly efficient enrichment of uranium from seawater via studtite nanodots growth–elution cycle. Nat. Commun. 15, 6700 (2024).

    Article  CAS  Google Scholar 

  5. Yuan, Y. et al. Selective extraction of uranium from seawater with biofouling-resistant polymeric peptide. Nat. Sustain. 4, 708–714 (2021).

    Article  Google Scholar 

  6. Zhu, Z. et al. Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems. eScience 4, 100249 (2024).

    Article  Google Scholar 

  7. Meng, Z. et al. Micro/nano metal–organic frameworks meet energy chemistry: a review of materials synthesis and applications. eScience 3, 100092 (2023).

    Article  Google Scholar 

  8. Yuan, Y. et al. DNA nano-pocket for ultra-selective uranyl extraction from seawater. Nat. Commun. 11, 5708 (2020).

    Article  CAS  Google Scholar 

  9. Kaushik, A. et al. Large-area self-standing thin film of porous hydrogen-bonded organic framework for efficient uranium extraction from seawater. Chem 8, 2749–2765 (2022).

    Article  CAS  Google Scholar 

  10. Wang, Y. et al. Electrochemical‐mediated regenerable FeII active sites for efficient uranium extraction at ultra‐low cell voltage. Angew. Chem. Int. Ed. 62, e202217601 (2023).

    Article  CAS  Google Scholar 

  11. Abney, C. W., Mayes, R. T., Saito, T. & Dai, S. Materials for the recovery of uranium from seawater. Chem. Rev. 117, 13935–14013 (2017).

    Article  CAS  Google Scholar 

  12. Chi, F., Zhang, S., Wen, J., Xiong, J. & Hu, S. Highly efficient recovery of uranium from seawater using an electrochemical approach. Ind. Eng. Chem. Res. 57, 8078–8084 (2018).

    Article  CAS  Google Scholar 

  13. Zhang, S. et al. Confining Ti-oxo clusters in covalent organic framework micropores for photocatalytic reduction of the dominant uranium species in seawater. Chem 9, 3172–3184 (2023).

    Article  CAS  Google Scholar 

  14. Zhang, Y. et al. Boosting uranium extraction from seawater by micro-redox reactors anchored in a seaweed-like adsorbent. Nat. Commun. 15, 9124 (2024).

    Article  CAS  Google Scholar 

  15. Qi, J.-X. et al. Ocean wave-driven covalent organic framework/ZnO heterostructure composites for piezocatalytic uranium extraction from seawater. Nat. Commun. 16, 1078 (2025).

    Article  CAS  Google Scholar 

  16. Tsarev, S., Collins, R. N., Fahy, A. & Waite, T. D. Reduced uranium phases produced from anaerobic reaction with nanoscale zerovalent iron. Environ. Sci. Technol. 50, 2595–2601 (2016).

    Article  CAS  Google Scholar 

  17. Wang, H. et al. Yeast‐raised polyamidoxime hydrogel prepared by ice crystal dispersion for efficient uranium extraction from seawater. Adv. Sci. 11, 2306534 (2024).

    Article  CAS  Google Scholar 

  18. Yuan, Y. et al. High-capacity uranium extraction from seawater through constructing synergistic multiple dynamic bonds. Nat. Water 3, 89–98 (2025).

    Article  CAS  Google Scholar 

  19. Wu, W. et al. Uranium extraction from seawater via hydrogen bond porous organic cages. J. Am. Chem. Soc. 147, 2228–2236 (2025).

    Article  CAS  Google Scholar 

  20. Li, R. et al. A cascade electro-dehydration process for simultaneous extraction and enrichment of uranium from simulated seawater. Water Res. 240, 120079 (2023).

    Article  CAS  Google Scholar 

  21. Ye, Y. et al. Electrochemical removal and recovery of uranium: effects of operation conditions, mechanisms, and implications. J. Hazard. Mater. 432, 128723 (2022).

    Article  CAS  Google Scholar 

  22. Zhang, C. et al. Overcoming chemical dissociation processes: electrochemical modulation of high‐affinity binding sites for rapid uranium extraction from seawater. Adv. Funct. Mater. 35, 2412712 (2024).

    Article  Google Scholar 

  23. Oladeji, A. V., Courtney, J. M., Fernandez-Villamarin, M. & Rees, N. V. Electrochemical metal recycling: recovery of palladium from solution and in situ fabrication of palladium-carbon catalysts via impact electrochemistry. J. Am. Chem. Soc. 144, 18562–18574 (2022).

    Article  CAS  Google Scholar 

  24. Li, M. et al. An electrochemical strategy for simultaneous heavy metal complexes wastewater treatment and resource recovery. Environ. Sci. Technol. 56, 10945–10953 (2022).

    Article  CAS  Google Scholar 

  25. Deng, H. et al. Potential‐mediated recycling of copper from brackish water by an electrochemical copper pump. Adv. Sci. 9, 2203189 (2022).

    Article  CAS  Google Scholar 

  26. Wang, Z. et al. Constructing an ion pathway for uranium extraction from seawater. Chem 6, 1683–1691 (2020).

    Article  CAS  Google Scholar 

  27. Li, T. et al. Heart trabeculae‐inspired superhydrophilic electrode for electric‐assisted uranium extraction from seawater. Adv. Funct. Mater. 35, 2412349 (2024).

    Article  Google Scholar 

  28. Zhang, S., Li, H. & Wang, S. Porous aromatic framework electrodes boost electrochemical uranium extraction. ACS Cent. Sci. 10, 7–9 (2024).

    Article  CAS  Google Scholar 

  29. Li, J. et al. Layered charge separation in surface boron doped copper with phosphate groups boosts the electrochemical uranium extraction from seawater. Appl. Catal. B 347, 123770 (2024).

    Article  CAS  Google Scholar 

  30. Liu, C. et al. A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat. Energy 2, 17007 (2017).

    Article  CAS  Google Scholar 

  31. Tsouris, C. Uranium extraction: fuel from seawater. Nat. Energy 2, 17022 (2017).

    Article  Google Scholar 

  32. Yang, H. et al. Functionalized iron–nitrogen–carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Adv. Mater. 33, 2106621 (2021).

    Article  CAS  Google Scholar 

  33. Jin, B., Gao, J., Zhang, Y. & Shao, M. Deprotonated of layered double hydroxides during electrocatalytic water oxidation for multi‐cations intercalation. Smart Mol. 2, e20230026 (2024).

    Article  Google Scholar 

  34. Liu, X. et al. Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime‐functionalized In–N–C catalyst. Adv. Sci. 9, 2201735 (2022).

    Article  CAS  Google Scholar 

  35. Li, J. et al. Regulation of perovskite oxides composition for the efficient electrocatalytic reactions. Smart Mol. 1, e20220005 (2023).

    Article  Google Scholar 

  36. Rashid, J. et al. A facile synthesis of bismuth oxychloride–graphene oxide composite for visible light photocatalysis of aqueous diclofenac sodium. Sci. Rep. 10, 14191 (2020).

    Article  CAS  Google Scholar 

  37. Deng, Y., Handoko, A. D., Du, Y., Xi, S. & Yeo, B. S. In situ raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of CuIII oxides as catalytically active species. ACS Catal. 6, 2473–2481 (2016).

    Article  CAS  Google Scholar 

  38. Poliakova, T. et al. Uranium oxides structural transformation in human body liquids. Sci. Rep. 13, 4088 (2023).

    Article  CAS  Google Scholar 

  39. Zhao, Y. et al. Pressure-induced phase transformation of botallackite α-Cu2(OH)3Cl with a two-dimensional layered structure synthesized via a hydrothermal strategy. J. Phys. Chem. C 124, 9581–9590 (2020).

    Article  CAS  Google Scholar 

  40. Yuan, K. et al. Electrochemical and spectroscopic evidence on the one-electron reduction of U(VI) to U(V) on magnetite. Environ. Sci. Technol. 49, 6206–6213 (2015).

    Article  CAS  Google Scholar 

  41. Qin, Y. et al. CO intermediate‐assisted dynamic Cu sintering during electrocatalytic CO2 reduction on Cu–N–C catalysts. Angew. Chem. Int. Ed. 63, e202404763 (2024).

    Article  CAS  Google Scholar 

  42. Prestipino, C. et al. Structural determination of copper species on the alumina-supported copper chloride catalyst: a detailed EXAFS study. J. Phys. Chem. B 107, 5022–5030 (2003).

    Article  CAS  Google Scholar 

  43. Lin, T. et al. Ion pair sites for efficient electrochemical extraction of uranium in real nuclear wastewater. Nat. Commun. 15, 4149 (2024).

    Article  CAS  Google Scholar 

  44. Tang, X. et al. Sulfur edge in molybdenum disulfide nanosheets achieves efficient uranium binding and electrocatalytic extraction in seawater. Nanoscale 14, 6285–6290 (2022).

    Article  CAS  Google Scholar 

  45. Zhang, Y., Zhou, J., Wang, D., Cao, R. & Li, J. Performance of MXene incorporated MOF-derived carbon electrode on deionization of uranium(VI). Chem. Eng. J. 430, 132702 (2022).

    Article  CAS  Google Scholar 

  46. Zhou, J. et al. Pseudocapacitive deionization of uranium(VI) with WO3/C electrode. Chem. Eng. J. 398, 125460 (2020).

    Article  CAS  Google Scholar 

  47. Huang, J., Liu, Z., Huang, D., Jin, T. & Qian, Y. Efficient removal of uranium(VI) with a phytic acid-doped polypyrrole/carbon felt electrode using double potential step technique. J. Hazard. Mater. 433, 128775 (2022).

    Article  CAS  Google Scholar 

  48. Kim, J. et al. Uptake of uranium from seawater by amidoxime-based polymeric adsorbent: field experiments, modeling, and updated economic assessment. Ind. Eng. Chem. Res. 53, 6076–6083 (2014).

    Article  CAS  Google Scholar 

  49. Lindner, H. & Schneider, E. Review of cost estimates for uranium recovery from seawater. Energy Econ. 49, 9–22 (2015).

    Article  Google Scholar 

  50. Chen, D. et al. Enhanced and selective uranium extraction onto electrospun nanofibers by regulating the functional groups and photothermal conversion performance. Chem. Eng. J. 480, 148108 (2024).

    Article  CAS  Google Scholar 

  51. Hao, M. et al. Modulating uranium extraction performance of multivariate covalent organic frameworks through donor–acceptor linkers and amidoxime nanotraps. JACS Au 3, 239–251 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Key R&D Program of China (grant no. 2021YFA1500900 to S.W.), the National Natural Science Foundation of China (grant nos. 22425021 to S.W. and 22272047 and 21905088 to Yanyong W.), the Provincial Natural Science Foundation of Hunan (grant no. 2022JJ10006 to Yanyong W.) and Hunan Provincial Innovation Foundation for Postgraduate (grant no. CX20240455 to Yanjing W.).

Author information

Authors and Affiliations

Authors

Contributions

S.W. and Yanyong W. proposed the research direction and guided the project. Yanyong W. proposed the design concept of the system. Yanjing W. conceived the research and performed experiments. S.W., Yanyong W. and Yanjing W. co-wrote the paper with input from all authors. G.W. helped with the cell device design. C.-L.D. and T.T.T.N. carried out the in situ XAFS test. Z.L., J.Y., C.X., S.D., F.Z., Y.C., J.W., Q.L., X.P. and Y.Y. provided suggestions on the experimental results and discussion.

Corresponding authors

Correspondence to Yanyong Wang or Shuangyin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Hui Wu, Wenkun Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–45, Tables 1–23 and Movie 1.

Reporting Summary

Supplementary Video 1

Video of a small-scale seawater trial in 100 l natural seawater using the bipolar EUE electrolyser stack.

Source data

Source Data Fig. 2

Unprocessed western blots.

Source Data Fig. 3

Unprocessed western blots.

Source Data Fig. 4

Unprocessed western blots.

Source Data Fig. 5

Unprocessed western blots.

Source Data Fig. 6

Unprocessed western blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wen, G., Liu, Z. et al. Bipolar electrochemical uranium extraction from seawater with ultra-low cell voltage. Nat Sustain 8, 682–691 (2025). https://doi.org/10.1038/s41893-025-01567-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-025-01567-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing