Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin crossover-driven diiron electrocatalyst boosts sustainable water oxidation

Subjects

Abstract

Electrocatalytic reduction of carbon dioxide and water oxidation are promising technologies to mitigate environmental problems. A critical bottleneck, however, is the significant energy loss that arises from the anodic oxygen evolution reaction (OER) with its sluggish kinetics and reliance on scarce noble metals. It is therefore essential to develop earth-abundant and efficient OER catalysts. Here we report the reactive diiron electrocatalyst [Fe2(µ-O)(µ-OH)(L1)2], where L1 is a nitrogen-based ligand, which exhibits an outstanding performance—achieving a turnover frequency of 20.2 s−1 at 1.580 V and a low overpotential of 184 mV at a current density of 10 mA cm−2—and exceptional stability over 1,000 h. This diiron electrocatalyst is formed via a spin crossover-driven dimerization mechanism, where the resulting diiron atomic configuration promotes strong metal–ligand covalency and facilitates the formation of key intermediates that are essential for efficient OER catalysis. Our findings offer a promising strategy for the design of high-performance catalysts for water oxidation and sustainable electrocatalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CV and OER activity of iron molecular complexes.
Fig. 2: In situ XAS measurements of L1Fe.
Fig. 3: In situ non-resonant Kβ emission spectra of L1Fe.
Fig. 4: In situ HERFD-XAS of L1Fe.
Fig. 5: OER mechanisms of L1Fe.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available within the article and its Supplementary Information. The source data are available via Zenodo at https://zenodo.org/uploads/15117987 (ref. 76).

References

  1. Tiwari, J. N. et al. Multi-heteroatom-doped carbon from waste-yeast biomass for sustained water splitting. Nat. Sustain. 3, 556–563 (2020).

    Article  Google Scholar 

  2. Seger, B., Robert, M. & Jiao, F. Best practices for electrochemical reduction of carbon dioxide. Nat. Sustain. 6, 236–238 (2023).

    Article  Google Scholar 

  3. Lu, B. et al. Key role of paracrystalline motifs on iridium oxide surfaces for acidic water oxidation. Nat. Catal. 7, 868–877 (2024).

    Article  CAS  Google Scholar 

  4. Lei, X. et al. High-entropy single-atom activated carbon catalysts for sustainable oxygen electrocatalysis. Nat. Sustain. 6, 816–826 (2023).

    Article  Google Scholar 

  5. Bard, A. J. & Fox, M. A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995).

    Article  CAS  Google Scholar 

  6. Garrido-Barros, P., Gimbert-Suriñach, C., Matheu, R., Sala, X. & Llobet, A. How to make an efficient and robust molecular catalyst for water oxidation. Chem. Soc. Rev. 46, 6088–6098 (2017).

    Article  CAS  Google Scholar 

  7. Zhang, B. & Sun, L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem. Soc. Rev. 48, 2216–2264 (2019).

    Article  CAS  Google Scholar 

  8. Nam, D.-H. et al. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 19, 266–276 (2020).

    Article  CAS  Google Scholar 

  9. Zhang, S., Fan, Q., Xia, R. & Meyer, T. J. CO2 reduction: from homogeneous to heterogeneous electrocatalysis. Acc. Chem. Res. 53, 255–264 (2020).

    Article  CAS  Google Scholar 

  10. Cui, X., Li, W., Ryabchuk, P., Junge, K. & Beller, M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 1, 385–397 (2018).

    Article  CAS  Google Scholar 

  11. Bai, L., Hsu, C.-S., Alexander, D. T. L., Chen, H. M. & Hu, X. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 6, 1054–1066 (2021).

    Article  CAS  Google Scholar 

  12. Zhu, Y. et al. Emerging dynamic structure of electrocatalysts unveiled by in situ X-ray diffraction/absorption spectroscopy. Energy Environ. Sci. 14, 1928–1958 (2021).

    Article  CAS  Google Scholar 

  13. Wang, J., Tan, H.-Y., Zhu, Y., Chu, H. & Chen, H. M. Linking the dynamic chemical state of catalysts with the product profile of electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 60, 17254–17267 (2021).

    Article  CAS  Google Scholar 

  14. Nomura, R. et al. Spin crossover and iron-rich silicate melt in the Earth’s deep mantle. Nature 473, 199–202 (2011).

    Article  CAS  Google Scholar 

  15. Real, J. A. et al. Spin crossover in a catenane supramolecular system. Science 268, 265–267 (1995).

    Article  CAS  Google Scholar 

  16. Ohkoshi, S.-i., Imoto, K., Tsunobuchi, Y., Takano, S. & Tokoro, H. Light-induced spin-crossover magnet. Nat. Chem. 3, 564–569 (2011).

    Article  CAS  Google Scholar 

  17. Baadji, N. et al. Electrostatic spin crossover effect in polar magnetic molecules. Nat. Mater. 8, 813–817 (2009).

    Article  CAS  Google Scholar 

  18. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater. 7, 179–186 (2008).

    Article  CAS  Google Scholar 

  19. Zitolo, A. et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 14, 937–942 (2015).

    Article  CAS  Google Scholar 

  20. Li, J. et al. Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nat. Catal. 4, 10–19 (2021).

    Article  Google Scholar 

  21. Lin, S.-C. et al. Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction. Nat. Commun. 11, 3532 (2020).

    Article  Google Scholar 

  22. Zhu, Y., Wang, J., Chu, H., Chu, Y.-C. & Chen, H. M. In situ/operando studies for designing next-generation electrocatalysts. ACS Energy Lett. 5, 1281–1291 (2020).

    Article  CAS  Google Scholar 

  23. Kraus, P. M., Zürch, M., Cushing, S. K., Neumark, D. M. & Leone, S. R. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat. Rev. Chem. 2, 82–94 (2018).

    Article  CAS  Google Scholar 

  24. Duan, L. et al. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nat. Chem. 4, 418–423 (2012).

    Article  CAS  Google Scholar 

  25. Cox, N., Pantazis, D. A., Neese, F. & Lubitz, W. Biological water oxidation. Acc. Chem. Res. 46, 1588–1596 (2013).

    Article  CAS  Google Scholar 

  26. Roy, C. et al. Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy. Nat. Catal. 1, 820–829 (2018).

    Article  CAS  Google Scholar 

  27. Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    Article  CAS  Google Scholar 

  28. Song, F. et al. An unconventional iron nickel catalyst for the oxygen evolution reaction. ACS Cent. Sci. 5, 558–568 (2019).

    Article  CAS  Google Scholar 

  29. Long, X. et al. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. Int. Ed. 126, 7714–7718 (2014).

    Article  Google Scholar 

  30. Zhao, S. et al. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1, 16184 (2016).

    Article  CAS  Google Scholar 

  31. Bai, L., Hsu, C.-S., Alexander, D. T., Chen, H. M. & Hu, X. A cobalt–iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 141, 14190–14199 (2019).

    Article  CAS  Google Scholar 

  32. Ping, J. et al. Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction. Adv. Mater. 28, 7640–7645 (2016).

    Article  CAS  Google Scholar 

  33. Qian, H. et al. In situ quantification of the active sites, turnover frequency, and stability of Ni–Fe (oxy)hydroxides for the oxygen evolution reaction. ACS Catal. 12, 14280–14289 (2022).

    Article  CAS  Google Scholar 

  34. Fei, H. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018).

    Article  CAS  Google Scholar 

  35. Wurster, B., Grumelli, D., Hötger, D., Gutzler, R. & Kern, K. Driving the oxygen evolution reaction by nonlinear cooperativity in bimetallic coordination catalysts. J. Am. Chem. Soc. 138, 3623–3626 (2016).

    Article  CAS  Google Scholar 

  36. Fillol, J. L. et al. Efficient water oxidation catalysts based on readily available iron coordination complexes. Nat. Chem. 3, 807–813 (2011).

    Article  CAS  Google Scholar 

  37. Chen, G., Chen, L., Ng, S.-M., Man, W.-L. & Lau, T.-C. Chemical and visible-light-driven water oxidation by iron complexes at pH 7–9: evidence for dual-active intermediates in iron-catalyzed water oxidation. Angew. Chem. Int. Ed. 52, 1789–1791 (2013).

    Article  CAS  Google Scholar 

  38. Okamura, M. et al. A pentanuclear iron catalyst designed for water oxidation. Nature 530, 465–468 (2016).

    Article  CAS  Google Scholar 

  39. Suen, N.-T. et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017).

    Article  CAS  Google Scholar 

  40. McCrory, C. C. L. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).

    Article  CAS  Google Scholar 

  41. Tung, C.-W. et al. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nat. Commun. 6, 8106 (2015).

    Article  CAS  Google Scholar 

  42. Jasniewski, A. J. & Que, L. Jr Dioxygen activation by nonheme diiron enzymes: diverse dioxygen adducts, high-valent intermediates, and related model complexes. Chem. Rev. 118, 2554–2592 (2018).

    Article  CAS  Google Scholar 

  43. Shu, L. et al. An Fe2IVO2 diamond core structure for the key intermediate Q of methane monooxygenase. Science 275, 515–518 (1997).

    Article  CAS  Google Scholar 

  44. Pollock, C. J., Delgado-Jaime, M. U., Atanasov, M., Neese, F. & DeBeer, S. Kβ mainline X-ray emission spectroscopy as an experimental probe of metal–ligand covalency. J. Am. Chem. Soc. 136, 9453–9463 (2014).

    Article  CAS  Google Scholar 

  45. Lambertz, C. et al. Electronic and molecular structures of the active-site H-cluster in [FeFe]-hydrogenase determined by site-selective X-ray spectroscopy and quantum chemical calculations. Chem. Sci. 5, 1187–1203 (2014).

    Article  CAS  Google Scholar 

  46. Henthorn, J. T. et al. Localized electronic structure of nitrogenase FeMoco revealed by selenium K-edge high resolution X-ray absorption spectroscopy. J. Am. Chem. Soc. 141, 13676–13688 (2019).

    Article  CAS  Google Scholar 

  47. Hung, S.-F. et al. Identification of stabilizing high-valent active sites by operando high-energy resolution fluorescence-detected X-ray absorption spectroscopy for high-efficiency water oxidation. J. Am. Chem. Soc. 140, 17263–17270 (2018).

    Article  CAS  Google Scholar 

  48. Westre, T. E. et al. A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. J. Am. Chem. Soc. 119, 6297–6314 (1997).

    Article  CAS  Google Scholar 

  49. Castillo, R. G. et al. High-energy-resolution fluorescence-detected X-ray absorption of the Q intermediate of soluble methane monooxygenase. J. Am. Chem. Soc. 139, 18024–18033 (2017).

    Article  CAS  Google Scholar 

  50. Xue, G., De Hont, R., Münck, E. & Que, L. Jr. Million-fold activation of the [Fe2(µ-O)2] diamond core for C–H bond cleavage. Nat. Chem. 2, 400–405 (2010).

  51. Guan, J. et al. Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat. Catal. 1, 870–877 (2018).

    Article  CAS  Google Scholar 

  52. Xu, H., Cheng, D., Cao, D. & Zeng, X. C. Revisiting the universal principle for the rational design of single-atom electrocatalysts. Nat. Catal. 7, 207–218 (2024).

    Article  CAS  Google Scholar 

  53. Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    Article  Google Scholar 

  54. Peng, G. et al. High-resolution manganese x-ray fluorescence spectroscopy. Oxidation-state and spin-state sensitivity. J. Am. Chem. Soc. 116, 2914–2920 (1994).

    Article  CAS  Google Scholar 

  55. Grimaud, A. et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017).

    Article  CAS  Google Scholar 

  56. Yagi, S. et al. Covalency-reinforced oxygen evolution reaction catalyst. Nat. Commun. 6, 8249 (2015).

    Article  Google Scholar 

  57. Zhou, Y. et al. Enlarged Co–O covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction. Adv. Mater. 30, 1802912 (2018).

    Article  Google Scholar 

  58. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  59. Filipponi, A. et al. Statistical errors in X-ray absorption fine-structure data analysis. J. Phys. Condens. Matter 7, 9343 (1995).

    Article  CAS  Google Scholar 

  60. Bevington, P. R. & Robinson, D. K. Data Reduction and Error Analysis for the Physical Sciences (McGraw Hill, 2003).

  61. Iwasawa, Y. X-ray Absorption Fine Structure for Catalysts and Surfaces (World Scientific, 1997)

  62. Stern, E. A. Number of relevant independent points in x-ray-absorption fine-structure spectra. Phys. Rev. B 48, 9825–9827 (1993).

    Article  CAS  Google Scholar 

  63. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  64. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  65. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  66. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  67. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  CAS  Google Scholar 

  68. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  69. Dai, Y. H. Convergence properties of the BFGS algorithm. SIAM J. Optim. 13, 693–701 (2002).

    Article  Google Scholar 

  70. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  71. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  Google Scholar 

  72. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  CAS  Google Scholar 

  73. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  74. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  75. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  CAS  Google Scholar 

  76. Tung, C.-W. et al. Spin crossover-driven diiron electrocatalyst boosts sustainable water oxidation. Zenodo https://zenodo.org/uploads/15117987 (2025).

Download references

Acknowledgements

H.M.C. and C.W.T. acknowledge support from the National Science and Technology Council, Taiwan (contract numbers NSTC 111-2628-M-002-010-RSP, 113-2123-M-002-005, 113-2639-M-002-009-ASP, 112-2926-I-002-513-G and 112-2113-M-131-002-MY2), the MCUT Formosa Center and from National Taiwan University (NTU-CC-113L893304). W.Z. is supported by the National Natural Science Foundation of China (grant number 22208126), the Natural Science Foundation of Jiangsu Province (grant number BK20210774) and the Scientific Research Startup Foundation of Jiangsu University (grant number 2021JDG025). X.C.Z. acknowledges support from Hong Kong Global STEM Professorship Scheme. We thank the interdisciplinary project of NSRRC for providing assistance with the synchrotron-based X-ray experiments.

Author information

Authors and Affiliations

Authors

Contributions

C.-W.T. conceived and performed the catalyst synthesis, electrochemical measurements, in situ synchrotron spectroscopy experiments, data analysis and wrote the paper. W.Z. conducted the DFT calculations. T.Y.L. performed the in situ spectroscopy measurements and carried out related theoretical calculations. J.W. assisted in the spectral data analysis. Y.-C.C. contributed to the electrochemical data analysis. G.-B.W. contributed to the spectral analysis. C.-S.H., Y.-F.L., N.H. and H.I. supported the setting up and interpretation of the synchrotron spectroscopy experiments. X.C.Z. contributed to theoretical insights and paper editing. H.M.C. supervised the overall project and co-wrote the paper. All authors discussed the results and contributed to the final paper.

Corresponding authors

Correspondence to Wei Zhang, Xiao Cheng Zeng or Hao Ming Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Boniface P. T. Fokwa, Lizhe Liu and Shiming Zhou for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental section, Figs. 1–63, Tables 1–13 and References.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tung, CW., Zhang, W., Lai, T.Y. et al. Spin crossover-driven diiron electrocatalyst boosts sustainable water oxidation. Nat Sustain 8, 793–805 (2025). https://doi.org/10.1038/s41893-025-01571-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-025-01571-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing