Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solar-enhanced low-temperature biological wastewater treatment

Abstract

Biological wastewater treatment (BWT) is critical to safeguard the aqueous environment. However, enzyme activities in microbial metabolism are inhibited by low temperatures, making BWT implementation in cold environments challenging. Here we propose a strategy to endow BWT facilities with low-temperature operation resilience by integrating photothermal technology with BWT using photothermal carriers (PTCs). Specifically, α-Fe2O3@polyaniline was coated onto a high-conductivity SiC ceramic matrix on a PTC, forming functional partitions for bacterial colonization. The upper layers of the PTCs have an interlaced porous structure and photothermal functions, which provided stable energy conversion and light shielding. The heat conducted downward formed a mesophilic, lightless zone in the lower PTC layers, resulting in high thermal conduction and bioaffinity. Consequently, anammox bacteria, a key biome for sustainable BWT, can be enriched in these PTCs, as evidenced by a 21.4% increase in abundance and a 2.2-fold increase in biomass. With the use of PTCs in a BWT facility under 0.6 kW m−2 illumination, the nitrogen removal performance at low temperature (15 °C) was 5.8 times higher than the case without the use of PTCs. Overall, this work shows how solar energy can be used to enhance the resilience of BWT to low temperatures, improving the applicability of BWT in cold regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphological characteristics of PTCs.
Fig. 2: Photothermal performance of PTCs.
Fig. 3: Reactor nitrogen concentration profiles.
Fig. 4: Microbial adhesion ability of the PTCs.
Fig. 5: Thermotaxis-mediated colonization of bacteria on the PTCs.
Fig. 6: The construction of PTCs and the promotion of nitrogen removal by anammox bacteria.

Similar content being viewed by others

Data availability

The raw meta-omics datasets have been deposited in the National Center for Biotechnology Information database under BioProject PRJNA1093580 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1093580). Source data are provided with this paper.

Code availability

All computer codes generated during this study are available from the corresponding author.

References

  1. Wang, Z. et al. A loading rate switch strategy for stable nitritation in mainstream municipal wastewater. Nat. Sustain. 7, 305–314 (2024).

    Article  Google Scholar 

  2. Zhang, M., Ji, B. & Liu, Y. Microalgal-bacterial granular sludge process: a game changer of future municipal wastewater treatment? Sci. Total Environ. 752, 141957 (2021).

    Article  CAS  Google Scholar 

  3. Lu, S., Liu, X., Liu, C., Cheng, G. & Shen, H. Influence of photoinhibition on nitrification by ammonia-oxidizing microorganisms in aquatic ecosystems. Rev. Environ. Sci. Biotechnol. 19, 531–542 (2020).

    Article  CAS  Google Scholar 

  4. Huo, T. et al. Metabolic acclimation of anammox consortia to decreased temperature. Environ. Int. 143, 105915 (2020).

    Article  CAS  Google Scholar 

  5. Gilbert, E. M. et al. Low temperature partial nitritation/anammox in a moving bed biofilm reactor treating low strength wastewater. Environ. Sci. Technol. 48, 8784–8792 (2014).

    Article  CAS  Google Scholar 

  6. Petropoulos, E., Dolfing, J., Davenport, R. J., Bowen, E. J. & Curtis, T. P. Developing cold-adapted biomass for the anaerobic treatment of domestic wastewater at low temperatures (4, 8 and 15 °C) with inocula from cold environments. Water Res. 112, 100–109 (2017).

    Article  CAS  Google Scholar 

  7. Smith, A. L., Skerlos, S. J. & Raskin, L. Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater. Water Res. 47, 1655–1665 (2013).

    Article  CAS  Google Scholar 

  8. Kouba, V. et al. High-rate partial nitritation of municipal wastewater after psychrophilic anaerobic pretreatment. Environ. Sci. Technol. 51, 11029–11038 (2017).

    Article  CAS  Google Scholar 

  9. Xu, J. et al. Start-up of aerobic granular biofilm at low temperature: performance and microbial community dynamics. Sci. Total Environ. 698, 134311 (2020).

    Article  CAS  Google Scholar 

  10. Lv, Y., Pan, J., Huo, T., Zhao, Y. & Liu, S. Enhanced microbial metabolism in one stage partial nitritation-anammox system treating low strength wastewater by novel composite carrier. Water Res. 163, 114872 (2019).

    Article  CAS  Google Scholar 

  11. Xu, Z. et al. Photosynthetic hydrogen production by droplet-based microbial micro-reactors under aerobic conditions. Nat. Commun. 11, 5985 (2020).

    Article  CAS  Google Scholar 

  12. Tetteh, E. K., Amankwa, M. O. & Yeboah, C. Emerging carbon abatement technologies to mitigate energy-carbon footprint: a review. Clean. Mater. 2, 100020 (2021).

    Article  CAS  Google Scholar 

  13. Zhang, J. et al. Photothermal Janus anode with photosynthesis-shielding effect for activating low-temperature biological wastewater treatment. Adv. Funct. Mater. 30, 2070045 (2020).

    Article  Google Scholar 

  14. Ding, C. et al. Photothermal enhanced enzymatic activity of lipase covalently immobilized on functionalized Ti3C2TX nanosheets. Chem. Eng. J. 378, 122205 (2019).

    Article  CAS  Google Scholar 

  15. Wang, Y. et al. Solar photothermal electrodes for highly efficient microbial energy harvesting at low ambient temperatures. ChemSusChem 11, 4071–4076 (2018).

    Article  CAS  Google Scholar 

  16. Wen, G., Deng, X., Wan, Q., Xu, X. & Huang, T. Photoreactivation of fungal spores in water following UV disinfection and their control using UV-based advanced oxidation processes. Water Res. 148, 1–9 (2019).

    Article  CAS  Google Scholar 

  17. Gomelsky, M. & Hoff, W. D. Light helps bacteria make important lifestyle decisions. Trends Microbiol. 19, 441–448 (2011).

    Article  CAS  Google Scholar 

  18. Li, X. et al. Composite carrier enhanced bacterial adhesion and nitrogen removal in partial nitrification/anammox process. Sci. Total Environ. 868, 161659 (2023).

    Article  CAS  Google Scholar 

  19. Liu, D. et al. Ti3C2 MXene as an excellent anode material for high-performance microbial fuel cells. J. Mater. Chem. A 6, 20887–20895 (2018).

    Article  CAS  Google Scholar 

  20. Scheidweiler, D. et al. Spatial structure, chemotaxis and quorum sensing shape bacterial biomass accumulation in complex porous media. Nat. Commun. 15, 191 (2024).

    Article  CAS  Google Scholar 

  21. Okshevsky, M. & Meyer, R. L. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit. Rev. Microbiol. 41, 341–352 (2015).

    Article  CAS  Google Scholar 

  22. Hurme, R., Berndt, K. D., Normark, S. J. & Rhen, M. A proteinaceous gene regulatory thermometer in salmonella. Cell 90, 55–64 (1997).

    Article  CAS  Google Scholar 

  23. Almblad, H. et al. Bacterial cyclic diguanylate signaling networks sense temperature. Nat. Commun. 12, 1986 (2021).

    Article  CAS  Google Scholar 

  24. Tang, X., Guo, Y., Jiang, B. & Liu, S. Metagenomic approaches to understanding bacterial communication during the anammox reactor start-up. Water Res. 136, 95–103 (2018).

    Article  CAS  Google Scholar 

  25. Pan, J. et al. Bacterial communication coordinated behaviors of whole communities to cope with environmental changes. Environ. Sci. Technol. 57, 4253–4265 (2023).

    Article  CAS  Google Scholar 

  26. Cheng, S. & Logan, B. E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun. 9, 492–496 (2007).

    Article  Google Scholar 

  27. Yuan, Y., Zhou, S., Liu, Y. & Tang, J. Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells. Environ. Sci. Technol. 47, 14525–14532 (2013).

    Article  CAS  Google Scholar 

  28. Tang, W., Yang, K., Qin, J., Li, X. & Niu, X. A 16-year dataset (2000–2015) of high-resolution (3 h, 10 km) global surface solar radiation. Earth Syst. Sci. Data 11, 1905–1915 (2019).

    Article  Google Scholar 

  29. Zhao, Y. et al. Insight into the aggregation capacity of anammox consortia during reactor start-up. Environ. Sci. Technol. 52, 3685–3695 (2018).

    Article  CAS  Google Scholar 

  30. Guo, Q. et al. Anaerobic ammonium oxidation (anammox) under realistic seasonal temperature variations: characteristics of biogranules and process performance. Bioresour. Technol. 192, 765–773 (2015).

    Article  CAS  Google Scholar 

  31. da Silva, R. J. et al. Extraction of plasmid DNA by use of a magnetic maghemite-polyaniline nanocomposite. Anal. Biochem. 575, 27–35 (2019).

    Article  Google Scholar 

  32. Ray, A. et al. Polyaniline: doping, structure and derivatives. Synth. Met. 29, 41–50 (1989).

    Article  Google Scholar 

  33. Yu, H. Q. Molecular Insights into extracellular polymeric substances in activated sludge. Environ. Sci. Technol. 54, 7742–7750 (2020).

    Article  CAS  Google Scholar 

  34. Solano, C., Echeverz, M. & Lasa, I. Biofilm dispersion and quorum sensing. Curr. Opin. Microbiol. 18, 96–104 (2014).

    Article  CAS  Google Scholar 

  35. Hira, D. et al. Anammox organism KSU-1 expresses a novel His/DOPA ligated cytochrome c. J. Mol. Biol. 430, 1189–1200 (2018).

    Article  CAS  Google Scholar 

  36. Ferousi, C. et al. Discovery of a functional, contracted heme-binding motif within a multiheme cytochrome. J. Biol. Chem. 294, 16953–16965 (2019).

    Article  CAS  Google Scholar 

  37. Ling, Y. et al. The influence of oxygen content on the thermal activation of hematite nanowires. Angew. Chem. 124, 4150–4155 (2012).

    Article  Google Scholar 

  38. Hou, X., Liu, S. & Zhang, Z. Role of extracellular polymeric substance in determining the high aggregation ability ofanammox sludge. Water Res. 75, 51–62 (2015).

    Article  CAS  Google Scholar 

  39. Grasso, D., Subramaniam, K., Butkus, M., Strevett, K. & Bergendahl, J. A review of non-DLVO interactions in environmental colloidal systems. Rev. Environ. Sci. Biotechnol. 1, 17–38 (2002).

    Article  CAS  Google Scholar 

  40. Xu, Y. & Cui, G. Influence of spectral characteristics of the Earth’s surface radiation on the greenhouse effect: principles and mechanisms. Atmos. Environ. 244, 117908 (2021).

    Article  CAS  Google Scholar 

  41. Goody, R. M. & Yung, Y. L. Atmospheric Radiation: Theoretical Basis (Oxford Academic, 1989); https://doi.org/10.1093/oso/9780195051346.001.0001

  42. Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface (ASTM International, 2012).

  43. Xu, Y. et al. Origami system for efficient solar driven distillation in emergency water supply. Chem. Eng. J. 356, 869–876 (2019).

    Article  CAS  Google Scholar 

  44. Fonseca, D. L. & Bassin, J. P. Investigating the most appropriate methods for attached solids determination in moving-bed biofilm reactors. Bioprocess. Biosyst. Eng. 42, 1867–1878 (2019).

    Article  CAS  Google Scholar 

  45. Henning, N. et al. Biological transformation of fexofenadine and sitagliptin by carrier-attached biomass and suspended sludge from a hybrid moving bed biofilm reactor. Water Res. 167, 115034 (2019).

    Article  CAS  Google Scholar 

  46. Li, X. Y. & Yang, S. F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res. 41, 1022–1030 (2007).

    Article  CAS  Google Scholar 

  47. Osnes, T., Sandstad, O., Skar, V., Osnes, M. & Kierulf, P. Total protein in common duct bile measured by acetonitrile precipitation and a micro bicinchoninic acid (BCA) method. Scand. J. Clin. Lab. Invest. 53, 757–763 (1993).

    Article  CAS  Google Scholar 

  48. Loewus, F. A. Improvement in anthrone method for determination of carbohydrates. Anal. Chem. 24, 219 (1952).

    Article  CAS  Google Scholar 

  49. Sinclair, P. R., Gorman, N. & Jacobs, J. M. Measurement of heme concentration. Curr. Protoc. Toxicol. https://doi.org/10.1002/0471140856.tx0803s00 (1999).

    Article  Google Scholar 

  50. Huang, D. Q. et al. Removal of extracellular deoxyribonucleic acid increases the permeability and mass transfer of anammox granular sludge with different sizes. Chemosphere 302, 134898 (2022).

    Article  CAS  Google Scholar 

  51. Corinaldesi, C., Danovaro, R. & Dell’Anno, A. Simultaneous recovery of extracellular and intracellular DNA suitable for molecular studies from marine sediments. Appl. Environ. Microbiol. 71, 46–50 (2005).

    Article  CAS  Google Scholar 

  52. Darling, A. E. et al. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 9, e243 (2014).

    Article  Google Scholar 

  53. Yang, Y. et al. Discovery of a new genus of anaerobic ammonium oxidizing bacteria with a mechanism for oxygen tolerance. Water Res. 226, 119165 (2022).

    Article  CAS  Google Scholar 

  54. Tong, F. et al. The microbiome of the buffalo digestive tract. Nat. Commun. 13, 823 (2022).

    Article  CAS  Google Scholar 

  55. Speth, D. R. et al. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system. Nat. Commun. 7, 11172 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China (grant no. 52270016) (S.L.) and National Key Research and Development Program of China (grant no. 2022YFC3203003) (S.L.).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the intellectual development of this study, discussed the results and commented on the paper. J.S. and S.L. conceived and designed the study. J.S., Y.F. and Y.M. acquired the data. X.W., L.K., Q.Z. and K.Z. analysed and interpreted the data. J.S., R.Z. and S.L. drafted and revised the article.

Corresponding author

Correspondence to Sitong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Texts 1–23, Figs. 1–20, Tables 1–4 and References.

Reporting Summary

Source data

Source Data Figs. 1–5

Source data for the main figures in the paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Feng, Y., Zheng, R. et al. Solar-enhanced low-temperature biological wastewater treatment. Nat Sustain 8, 1048–1057 (2025). https://doi.org/10.1038/s41893-025-01591-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-025-01591-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research