Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

A database for identifying and tracking renewable energy embodied in global trade

Abstract

Using more renewable energy to make exported goods helps reduce carbon emissions from global trade. However, current global trade databases often lack precise data on how much renewable energy is used to produce traded goods, limiting insights into how this is changing over time. To address this gap, we develop a renewable energy featured final energy account (RE-FEA) that quantifies final energy (electricity and non-electric energy products) directly consumed by end-use sectors. This dataset covers 145 countries, 163 sectors and annual data from 2011 to 2022. From the dataset, we estimate that the share of renewable energy embodied in exports over total embodied energy rose from 8% to 13% over the period. Cleaner energy exports are concentrated among high-income and upper-middle income countries and in light industry and material manufacturing. This dataset fills gaps in current Multi-Regional Input–Output data and can improve the understanding of how global trade impacts sustainability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of RE-FEA dataset construction and application.
Fig. 2: Changes in renewable energy and fossil fuel embodied in global trade.
Fig. 3: Regional trend.
Fig. 4: Energy embodied in exports by sector and by income group.
Fig. 5: Embodied energy trade pattern and trend.

Similar content being viewed by others

Data availability

The RE-FEA database, comprising three distinct energy account categories (renewable energy, carbon-free energy and fossil fuel) for both REX3 and Eora datasets, and geographical and sectoral mapping matrices used to develop RE-FEA database are publicly available via Zenodo at https://doi.org/10.5281/zenodo.15826919 (ref. 53). Final energy consumption and national electricity mix data are derived from IEA Extended Energy Balances27 (https://www.iea.org/data-and-statistics/data-product/world-energy-balances). REX3 MRIO table can be downloaded via Zenodo at https://doi.org/10.5281/zenodo.10354283 (ref. 28). Eora MRIO table is available at the Eora Global Supply Chain Database (https://worldmrio.com/). The transport allocation share is available from ref. 15. Income group classification is available at https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html. Development stage classification of each country (region) is available at https://unctadstat.unctad.org/EN/Classifications.html. Source data are provided with this paper.

Code availability

The code for RE-FEA construction and MRIO analysis is publicly available via Zenodo at https://doi.org/10.5281/zenodo.15826919 (ref. 53).

References

  1. Yang, L. et al. Environmental-social-economic footprints of consumption and trade in the Asia–Pacific region. Nat. Commun. 11, 4490 (2020).

    Article  CAS  Google Scholar 

  2. Chen, G. Q. & Wu, X. F. Energy overview for globalized world economy: source, supply chain and sink. Renewable Sustainable Energy Rev. 69, 735–749 (2017).

    Article  CAS  Google Scholar 

  3. Pan, A., Xiao, T., Dai, L. & Shi, X. Global transfer of embodied energy: from source to sink through global value chains. Sustainable Prod. Consumption 31, 39–51 (2022).

    Article  Google Scholar 

  4. Yang, Y., Zhou, Y., Shan, Y. & Hubacek, K. The shift of embodied energy flows among the Global South and Global North in the post-globalisation era. Energy Econ. https://doi.org/10.1016/j.eneco.2024.107408 (2024).

  5. Jiang, L., He, S., Tian, X., Zhang, B. & Zhou, H. Energy use embodied in international trade of 39 countries: spatial transfer patterns and driving factors. Energy 195, 116988 (2020).

    Article  Google Scholar 

  6. Chen, B. et al. Global energy flows embodied in international trade: a combination of environmentally extended input–output analysis and complex network analysis. Appl. Energy 210, 98–107 (2018).

    Article  Google Scholar 

  7. Wang, Q., Jiang, F. & Li, R. Assessing supply chain greenness from the perspective of embodied renewable energy—a data envelopment analysis using multi-regional input-output analysis. Renewable Energy 189, 1292–1305 (2022).

    Article  Google Scholar 

  8. Wang, Q. & Liu, Y. India’s renewable energy: new insights from multi-regional input output and structural decomposition analysis. J. Cleaner Prod. 283, 124230 (2021).

    Article  Google Scholar 

  9. Montoya, M. A., Allegretti, G., Sleimann Bertussi, L. A. & Talamini, E. Renewable and non-renewable in the energy-emissions-climate nexus: Brazilian contributions to climate change via international trade. J. Cleaner Prod. 312, 127700 (2021).

    Article  Google Scholar 

  10. Zheng, S. et al. Assessment of the global energy transition: based on trade embodied energy analysis. Energy 273, 127274 (2023).

    Article  CAS  Google Scholar 

  11. He, J., Yang, Y., Liao, Z., Xu, A. & Fang, K. Linking SDG 7 to assess the renewable energy footprint of nations by 2030. Appl. Energy 317, 119167 (2022).

    Article  Google Scholar 

  12. Inter-Country Input–Output Tables (OECD, 2021); https://www.oecd.org/en/data/datasets/inter-country-input-output-tables.html

  13. Huo, J. et al. Full-scale, near real-time multi-regional input–output table for the global emerging economies (EMERGING). J. Ind. Ecol. 26, 1218–1232 (2022).

    Article  Google Scholar 

  14. Stadler, K. et al. EXIOBASE 3: developing a time series of detailed environmentally extended multi‐regional input‐output tables. J. Ind. Ecol. 22, 502–515 (2018).

    Article  Google Scholar 

  15. Rasul, K., Schmidt, S., Hertwich, E. G. & Wood, R. EXIOBASE energy accounts: improving precision in an open-sourced procedure applicable to any MRIO database. J. Ind. Ecol. 28, 1771–1785 (2024).

    Article  Google Scholar 

  16. Stadler, K. et al. EXIOBASE 3. Zenodo https://doi.org/10.5281/zenodo.14869924 (2025).

  17. Andrew, R. M. & Peters, G. P. A multi-region input–output table based on the global trade analysis project database (gtap-Mrio). Econ. Syst. Res. 25, 99–121 (2013).

    Article  Google Scholar 

  18. Aguiar, A., Chepeliev, M., Corong, E. & van der Mensbrugghe, D. The Global Trade Analysis Project (GTAP) data base: version 11. J. Glob. Econ. Anal. https://doi.org/10.21642/JGEA.070201AF (2022).

  19. McDougall, R. & Chepeliev, M. An energy data base for GTAP. in Global Trade, Assistance, and Production: the GTAP 10 Data Base (ed Aguiar, A.) Chap. 11 (GTAP, 2021); https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=6437

  20. Wiedmann, T. An input–output virtual laboratory in practice—survey of uptake, usage and applications of the first operational IELab. Econ. Syst. Res. 29, 296–312 (2017).

    Article  Google Scholar 

  21. Lenzen, M. et al. Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nat. Sustain. 5, 157–166 (2022).

    Article  Google Scholar 

  22. Lenzen, M., Moran, D., Kanemoto, K. & Geschke, A. Building Eora: a global multi-region input–output database at high country and sector resolution. Econ. Syst. Res. 25, 20–49 (2013).

    Article  Google Scholar 

  23. Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 46, 8374–8381 (2012).

    Article  CAS  Google Scholar 

  24. Timmer, M. P., Dietzenbacher, E., Los, B., Stehrer, R. & De Vries, G. J. An illustrated user guide to the world input–output database: the case of global automotive production. Rev. Int. Econ. 23, 575–605 (2015).

    Article  Google Scholar 

  25. Teodora, C. et al. World input–output database environmental accounts. Publications Office of the European Union https://doi.org/10.2760/024036 (2019).

  26. Usubiaga-Liaño, A., Arto, I. & Acosta-Fernández, J. Double accounting in energy footprint and related assessments: how common is it and what are the consequences? Energy 222, 119891 (2021).

    Article  Google Scholar 

  27. World Energy Balances (IEA, 2024); https://www.iea.org/data-and-statistics/data-product/world-energy-balances

  28. Cabernard, L., Pfister, S. & Hellweg, S. Resolved Exiobase version 3 (REX3). Zenodo https://doi.org/10.5281/zenodo.10354283 (2024).

  29. Cabernard, L., Pfister, S. & Hellweg, S. Biodiversity impacts of recent land-use change driven by increases in agri-food imports. Nat. Sustain. 7, 1512–1524 (2024).

    Article  Google Scholar 

  30. Han, S. et al. Prospects for global sustainable development through integrating the environmental impacts of economic activities. Nat. Commun. 15, 8424 (2024).

    Article  CAS  Google Scholar 

  31. Peng, K. et al. The global power sector’s low-carbon transition may enhance sustainable development goal achievement. Nat. Commun. 14, 3144 (2023).

    Article  CAS  Google Scholar 

  32. Malik, A. et al. Polarizing and equalizing trends in international trade and Sustainable Development Goals. Nat. Sustain. https://doi.org/10.1038/s41893-024-01397-5 (2024).

  33. Xu, Z. et al. Impacts of international trade on global sustainable development. Nat. Sustain. 3, 964–971 (2020).

    Article  Google Scholar 

  34. Della Bella, S., Sen, B., Cimpan, C., Rocco, M. V. & Liu, G. Exploring the impact of recycling on demand–supply balance of critical materials in green transition: a dynamic multi-regional waste input–output analysis. Environ. Sci. Technol. 57, 10221–10230 (2023).

    Article  Google Scholar 

  35. Owen, J. R. et al. Energy transition minerals and their intersection with land-connected peoples. Nat. Sustain. 6, 203–211 (2023).

    Article  Google Scholar 

  36. Oswald, Y., Owen, A. & Steinberger, J. K. Large inequality in international and intranational energy footprints between income groups and across consumption categories. Nat. Energy 5, 231–239 (2020).

    Article  Google Scholar 

  37. Brockway, P. E., Owen, A., Brand-Correa, L. I. & Hardt, L. Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources. Nat. Energy 4, 612–621 (2019).

    Article  CAS  Google Scholar 

  38. World Energy Balance Database Documentation (IEA, 2022); https://www.iea.org/subscribe-to-data-services/world-energy-balances-and-statistics

  39. Statistics Division International Standard Industrial Classification of All Economic Activities (ISIC) Rev. 4 (United Nations, 2008).

  40. Klenner, J., Lund, M. T., Muri, H. & Strømman, A. H. Combining fleetwide AviTeam aviation emission modeling with LCA perspectives for an alternative fuel impact assessment. Environ. Sci. Technol. 58, 9135–9146 (2024).

    Article  CAS  Google Scholar 

  41. Klenner, J., Muri, H. & Strømman, A. H. High-resolution modeling of aviation emissions in Norway. Transp. Res. Part Transp. Environ. 109, 103379 (2022).

    Article  Google Scholar 

  42. Kramel, D. et al. Global shipping emissions from a well-to-wake perspective: the MariTEAM model. Environ. Sci. Technol. 55, 15040–15050 (2021).

    Article  CAS  Google Scholar 

  43. Kim, Y.-R., Steen, S., Kramel, D., Muri, H. & Strømman, A. H. Modelling of ship resistance and power consumption for the global fleet: the MariTEAM model. Ocean Eng. 281, 114758 (2023).

    Article  Google Scholar 

  44. Open Data | Electricity & Climate. Ember https://ember-climate.org/data/ (2023).

  45. Wiedmann, T. & Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 11, 314–321 (2018).

    Article  CAS  Google Scholar 

  46. Meng, J. et al. The rise of south–south trade and its effect on global CO2 emissions. Nat. Commun. 9, 1871 (2018).

    Article  Google Scholar 

  47. Bruckner, B. et al. Ecologically unequal exchanges driven by EU consumption. Nat. Sustain. https://doi.org/10.1038/s41893-022-01055-8 (2023).

  48. Xiao, H. et al. Global transboundary synergies and trade-offs among Sustainable Development Goals from an integrated sustainability perspective. Nat. Commun. 15, 500 (2024).

    Article  CAS  Google Scholar 

  49. Chancel, L. Global carbon inequality over 1990–2019. Nat. Sustain. 5, 931–938 (2022).

    Article  Google Scholar 

  50. Hong, C. et al. Land-use emissions embodied in international trade. Science 376, 597–603 (2022).

    Article  CAS  Google Scholar 

  51. Zhang, Z., Li, J. & Guan, D. Value chain carbon footprints of Chinese listed companies. Nat. Commun. 14, 2794 (2023).

    Article  CAS  Google Scholar 

  52. Estimating CO2 Emissions Embodied in Final Demand and Trade Using the OECD ICIO 2015: Methodology and Results vol. 2016/05 (OECD, 2016); https://www.oecd-ilibrary.org/science-and-technology/estimating-co2-emissions-embodied-in-final-demand-and-trade-using-the-oecd-icio-2015_5jlrcm216xkl-en

  53. Cheng, Y. & Yang, Y. A database for identifying and tracking renewable energy embodied in global trade. Zenodo https://doi.org/10.5281/zenodo.15826919 (2025).

Download references

Acknowledgements

This work was funded by the Ministry of Science and Technology of the People’s Republic of China (2023YFB3906700; Y.Y.), National Natural Science Foundation of China (42130712, 42121001 and 72348003; Y.Y.).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. and Y.C. designed the study. Y.Y., Y.C. and J.P.H.P. conducted the analysis and wrote the paper. Y.Z. and X.Q. provided guidance on methods and calculation. Y.C., S.X., X.L. and J.X. collected data and provided support on visualization. L.Z. and H.Z. provided comments. Y.Y. and J.P.H.P. supervised the study. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yu Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Anne Owen, Christina Prell, Narasimha Rao and Daniel Scholten for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–11 and Tables 1–15.

Reporting Summary

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Cheng, Y., Poon, J.P.H. et al. A database for identifying and tracking renewable energy embodied in global trade. Nat Sustain (2025). https://doi.org/10.1038/s41893-025-01614-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41893-025-01614-9

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene