Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The potential impacts of plastic on the marine carbon cycle

Abstract

Increasing plastic waste has triggered global concerns for the potential detrimental effects on marine ecosystems. The impact of plastic reaches beyond the immediate harm to marine life to encompass the marine biogeochemical cycle and the global carbon budget. We investigate these effects by integrating an oceanic plastic simulation with a marine ecosystem model. We find that oceanic plastic could disturb the marine carbon cycle through three pathways: the plastic carbon buried in sediments, the release of dissolved organic carbon from water-column plastic and the toxicity effect on marine phytoplankton. Our scenario analysis suggests that there are 0.70 (0.13–3.8) Tg of plastics entering the ocean every year, however, the overall impact of oceanic plastics on decreasing ocean carbon uptake could reach 12.1 TgC yr−1. Our model predicts that the global plastic released into the ocean could result in up to 1.6 PgC of lost ocean carbon uptake and storage by 2050, given the foreseeable growth of plastic production and its long-lasting impacts. We urge comprehensive control policies to mitigate the losses caused by marine plastics both in ecosystem integrity and addressing climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Framework of the NJU-MP model and the Darwin ecosystem model coupling.
Fig. 2: Plastic carbon buried in sediments and beaches.
Fig. 3: Impacts of DOC released by marine plastic on the ocean carbon cycle.
Fig. 4: Toxicity effect of oceanic plastic on phytoplankton biomass/growth over the top 100 m depth and sea-to-air CO2 flux.

Similar content being viewed by others

Data availability

All data are available in the Article, Supplementary Information or via Zenodo at https://zenodo.org/records/16722412 (ref. 57). Correspondence should be addressed to Y.Z.

Code availability

All model code is available via Zenodo at https://zenodo.org/records/16722412 (ref. 57).

References

  1. Zhang, Y. et al. Plastic waste discharge to the global ocean constrained by seawater observations. Nat. Commun. 14, 1372 (2023).

    Article  CAS  Google Scholar 

  2. Fu, Y. et al. Modeling atmospheric microplastic cycle by GEOS-Chem: an optimized estimation by a global dataset suggests likely 50 times lower ocean emissions. One Earth 6, 705–714 (2023).

    Article  Google Scholar 

  3. Kooi, M., Nes, E. H. V., Scheffer, M. & Koelmans, A. A. Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics. Environ. Sci. Technol. 51, 7963–7971 (2017).

    Article  CAS  Google Scholar 

  4. Allen, S. et al. Evidence of free tropospheric and long-range transport of microplastic at Pic du Midi Observatory. Nat. Commun. 12, 7242 (2021).

    Article  CAS  Google Scholar 

  5. Cressey, D. Bottles, bags, ropes and toothbrushes: the struggle to track ocean plastics. Nature 536, 263–265 (2016).

    Article  CAS  Google Scholar 

  6. Galgani, L. & Loiselle, S. A. Plastic pollution impacts on marine carbon biogeochemistry. Environ. Pollut. 268, 115598 (2021).

    Article  CAS  Google Scholar 

  7. Dutkiewicz, S., Follows, M. J. & Bragg, J. G. Modeling the coupling of ocean ecology and biogeochemistry. Glob. Biogeochem. Cycles 23, 2008GB003405 (2009).

    Article  Google Scholar 

  8. Moran, M. A. et al. Deciphering ocean carbon in a changing world. Proc. Natl Acad. Sci. USA 113, 3143–3151 (2016).

    Article  CAS  Google Scholar 

  9. Galgani, L. et al. Hitchhiking into the deep: how microplastic particles are exported through the biological carbon pump in the North Atlantic Ocean. Environ. Sci. Technol. 56, 15638–15649 (2022).

    Article  CAS  Google Scholar 

  10. Roberts, C. et al. Microplastics may reduce the efficiency of the biological carbon pump by decreasing the settling velocity and carbon content of marine snow. Limnol. Oceanogr. 69, 1918–1928 (2024).

    Article  CAS  Google Scholar 

  11. Wu, N., Grieve, S. W. D., Manning, A. J. & Spencer, K. L. Flocs as vectors for microplastics in the aquatic environment. Nat. Water 2, 1082–1090 (2024).

    Article  Google Scholar 

  12. IPCC. Climate Change 2021: The Physical Science Basis (Cambridge Univ. Press, 2023).

  13. Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013).

    Article  CAS  Google Scholar 

  14. Alongi, D. M. Blue Carbon (Springer, 2018).

  15. Smeaton, C. Augmentation of global marine sedimentary carbon storage in the age of plastic. Limnol. Oceanogr. Lett. 6, 113–118 (2021).

    Article  CAS  Google Scholar 

  16. Romera-Castillo, C., Pinto, M., Langer, T. M., Álvarez-Salgado, X. A. & Herndl, G. J. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat. Commun. 9, 1430 (2018).

    Article  Google Scholar 

  17. Kvale, K., Hunt, C., James, A. & Koeve, W. Regionally disparate ecological responses to microplastic slowing of faecal pellets yields coherent carbon cycle response. Front. Mar. Sci. 10, 1111838 (2023).

    Article  Google Scholar 

  18. Galgani, L. et al. Marine plastics alter the organic matter composition of the air–sea boundary layer, with influences on CO2 exchange: a large-scale analysis method to explore future ocean scenarios. Sci. Total Environ. 857, 159624 (2023).

    Article  CAS  Google Scholar 

  19. Sendra, M., Rodriguez-Romero, A., Yeste, M. P., Blasco, J. & Tovar-Sánchez, A. Products released from surgical face masks can provoke cytotoxicity in the marine diatom Phaeodactylum tricornutum. Sci. Total Environ. 841, 156611 (2022).

    Article  CAS  Google Scholar 

  20. Zhu, Z. et al. Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum. Environ. Pollut. 246, 509–517 (2019).

    Article  CAS  Google Scholar 

  21. Zhao, T. et al. Microplastic-induced apoptosis and metabolism responses in marine dinoflagellate, Karenia mikimotoi. Sci. Total Environ. 804, 150252 (2022).

    Article  CAS  Google Scholar 

  22. Tetu, S. G. et al. Plastic leachates impair growth and oxygen production in Prochlorococcus, the ocean’s most abundant photosynthetic bacteria. Commun. Biol. 2, 184 (2019).

    Article  Google Scholar 

  23. Ge, J. et al. Microplastics impacts in seven flagellate microalgae: role of size and cell wall. Environ. Res. 206, 112598 (2022).

    Article  CAS  Google Scholar 

  24. Chae, Y., Kim, D. & An, Y.-J. Effects of micro-sized polyethylene spheres on the marine microalga Dunaliella salina: focusing on the algal cell to plastic particle size ratio. Aquat. Toxicol. 216, 105296 (2019).

    Article  CAS  Google Scholar 

  25. Lagarde, F. et al. Microplastic interactions with freshwater microalgae: hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ. Pollut. 215, 331–339 (2016).

    Article  CAS  Google Scholar 

  26. Galgani, L. et al. Microplastics increase the marine production of particulate forms of organic matter. Environ. Res. Lett. 14, 124085 (2019).

    Article  CAS  Google Scholar 

  27. Machado, M. C., Vimbela, G. V., Silva-Oliveira, T. T., Bose, A. & Tripathi, A. The response of Synechococcus sp. PCC 7002 to micro-/nano polyethylene particles—investigation of a key anthropogenic stressor. PLoS ONE 15, e0232745 (2020).

    Article  CAS  Google Scholar 

  28. Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007).

    Article  CAS  Google Scholar 

  29. Athanasiou, P. et al. Global distribution of nearshore slopes with implications for coastal retreat. Earth Syst. Sci. Data 11, 1515–1529 (2019).

  30. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  Google Scholar 

  31. Lebreton, L. The status and fate of oceanic garbage patches. Nat. Rev. Earth Environ. 3, 730–732 (2022).

    Article  Google Scholar 

  32. Mai, L. et al. Global riverine plastic outflows. Environ. Sci. Technol. 54, 10049–10056 (2020).

    Article  CAS  Google Scholar 

  33. Feng, L.-J. et al. Short-term exposure to positively charged polystyrene nanoparticles causes oxidative stress and membrane destruction in cyanobacteria. Environ. Sci. Nano 6, 3072–3079 (2019).

    Article  CAS  Google Scholar 

  34. Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).

    Article  CAS  Google Scholar 

  35. Zheng, J. & Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 9, 374–378 (2019).

    Article  Google Scholar 

  36. Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    Article  CAS  Google Scholar 

  37. Flombaum, P. et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).

    Article  CAS  Google Scholar 

  38. World Bank Group. CO2 emissions (kt). World Bank Open Data https://data.worldbank.org (2023).

  39. Zhu, L., Zhao, S., Bittar, T. B., Stubbins, A. & Li, D. Photochemical dissolution of buoyant microplastics to dissolved organic carbon: rates and microbial impacts. J. Hazard. Mater. 383, 121065 (2020).

    Article  CAS  Google Scholar 

  40. Ziervogel, K. et al. Microbial interactions with microplastics: insights into the plastic carbon cycle in the ocean. Mar. Chem. 262, 104395 (2024).

    Article  CAS  Google Scholar 

  41. DeAngelo, J. et al. Energy systems in scenarios at net-zero CO2 emissions. Nat. Commun. 12, 6096 (2021).

    Article  CAS  Google Scholar 

  42. Kvale, K., Prowe, A. E. F., Chien, C.-T., Landolfi, A. & Oschlies, A. Zooplankton grazing of microplastic can accelerate global loss of ocean oxygen. Nat. Commun. 12, 2358 (2021).

    Article  CAS  Google Scholar 

  43. Intergovernmental negotiating committee on plastic pollution. UNEP https://www.unep.org/inc-plastic-pollution (2024).

  44. Lee, Y. K., Murphy, K. R. & Hur, J. Fluorescence signatures of dissolved organic matter leached from microplastics: polymers and additives. Environ. Sci. Technol. 54, 11905–11914 (2020).

    Article  CAS  Google Scholar 

  45. Zhao, T., Tan, L., Huang, W. & Wang, J. The interactions between micro polyvinyl chloride (mPVC) and marine dinoflagellate Karenia mikimotoi: the inhibition of growth, chlorophyll and photosynthetic efficiency. Environ. Pollut. 247, 883–889 (2019).

    Article  CAS  Google Scholar 

  46. Tréguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11, 27–37 (2018).

    Article  Google Scholar 

  47. Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C. A finite‐volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. Oceans 102, 5753–5766 (1997).

    Article  Google Scholar 

  48. Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).

    Article  CAS  Google Scholar 

  49. Wang, X. et al. Ship emissions around China under gradually promoted control policies from 2016 to 2019. Atmos. Chem. Phys. 21, 13835–13853 (2021).

    Article  CAS  Google Scholar 

  50. Weiss, L. et al. The missing ocean plastic sink: gone with the rivers. Science 373, 107–111 (2021).

    Article  CAS  Google Scholar 

  51. Smith, W. O. The relative importance of chlorophyll, dissolved and particulate material, and seawater to the vertical extinction of light. Estuar. Coast. Shelf Sci. 15, 459–465 (1982).

    Article  Google Scholar 

  52. Su, Y. et al. Microplastic exposure represses the growth of endosymbiotic dinoflagellate Cladocopium goreaui in culture through affecting its apoptosis and metabolism. Chemosphere 244, 125485 (2020).

    Article  CAS  Google Scholar 

  53. Ripken, C., Khalturin, K. & Shoguchi, E. Response of coral reef dinoflagellates to nanoplastics under experimental conditions suggests downregulation of cellular metabolism. Microorganisms 8, 1759 (2020).

    Article  CAS  Google Scholar 

  54. Liu, G., Jiang, R., You, J., Muir, D. C. G. & Zeng, E. Y. Microplastic impacts on microalgae growth: effects of size and humic acid. Environ. Sci. Technol. 54, 1782–1789 (2020).

    Article  CAS  Google Scholar 

  55. Zhang, C., Chen, X., Wang, J. & Tan, L. Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae. Environ. Pollut. 220, 1282–1288 (2017).

    Article  CAS  Google Scholar 

  56. Focardi, A. et al. Plastic leachates impair picophytoplankton and dramatically reshape the marine microbiome. Microbiome 10, 179 (2022).

    Article  Google Scholar 

  57. PANG, Q. Code and data for ‘The potential impacts of plastic on the marine carbon cycle’. Zenodo https://doi.org/10.5281/zenodo.16722411 (2025).

Download references

Acknowledgements

We appreciate A. T. Schartup and E. Zakem for the helpful discussions and suggestions. This study is supported by the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX23_0125) (to Q.P.). L.G. was supported by the Italian Ministry of University and Research funded by the European Union-Next Generation EU, project code CN_00000033, CUP B63 C22000650007, project title ‘National Biodiversity Future Center-NBFC’.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Y.Z., Q.P. Methodology: Q.P., P.W., X.W., Z.Z., T.Y. Investigation: Q.P., P.W. Visualization: Q.P., P.W., X.W. Funding acquisition: Q.P. Project administration: Y.Z. Supervision: Y.Z. Writing—original draft: Q.P., Y.Z. Writing—review and editing: Y.Z., Q.P., L.G., T.Y., H.W.

Corresponding author

Correspondence to Yanxu Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Text and Tables 1–10.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Q., Wu, P., Galgani, L. et al. The potential impacts of plastic on the marine carbon cycle. Nat Sustain (2025). https://doi.org/10.1038/s41893-025-01632-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41893-025-01632-7

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene