Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasmonic nanoheating for versatile water purification membranes

Abstract

Global water scarcity motivates sustainable clean water production from non-traditional water sources. While existing reverse osmosis (RO) membranes dominate seawater desalination, they are far from ideal for purifying diverse water sources due to inadequate removal of various low-molecular-weight contaminants. Here we overcome this limitation by developing ultraselective polyamide RO membranes via in situ interfacial plasmonic nanoheating integrated interfacial polymerization (IP). The rapid localized heating at the nano-interface of IP boosts the reactivity of monomers, improves the local mass transfer of amine monomers, and facilitates interfacial degassing/vaporization. Consequently, the resultant RO membrane, featuring highly crosslinked polyamide with extensive internal nanovoids, exhibits superior removal for a wide spectrum of toxic and hard-to-remove contaminants found in different water sources, revealing transformative potential for various water treatment scenarios. It also shows a transcendent desalination performance (water permeance of 3.4 l m−2 h−1 bar−1 and NaCl rejection of 99.7%), which further enables efficient desalination of natural seawater for high-quality freshwater, indicating great promise for practical applications. Our study opens a route to develop high-performance RO membranes for effectively purifying diverse water sources towards sustainable clean water production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagrams of membrane fabrication and characterization of plasmon resonance of AgNPs.
Fig. 2: Numerical simulations of temperature distribution and fluid velocity vectors in the vicinity of the AgNPs within 2 s.
Fig. 3: Nanostructure, properties and performance of the fabricated polyamide RO membranes.
Fig. 4: Performance of IPH-IP RO membrane for treating natural seawater and removing a wide spectrum of contaminants.

Similar content being viewed by others

Data availability

All data are available in this Article and its Supplementary Information. Source data are provided with this paper.

References

  1. Eliasson, J. The rising pressure of global water shortages. Nature 517, 6 (2015).

    Article  CAS  Google Scholar 

  2. Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    Article  Google Scholar 

  3. Caldera, U. & Breyer, C. Learning curve for seawater reverse osmosis desalination plants: capital cost trend of the past, present, and future. Water Resour. Res. 53, 10523–10538 (2017).

    Article  Google Scholar 

  4. Tang, C. Y. et al. Potable water reuse through advanced membrane technology. Environ. Sci. Technol. 52, 10215–10223 (2018).

    Article  CAS  Google Scholar 

  5. Finnerty, C. T. K. et al. The future of municipal wastewater reuse concentrate management: drivers, challenges, and opportunities. Environ. Sci. Technol. 58, 3–16 (2024).

    Article  CAS  Google Scholar 

  6. Sima, L. C. & Elimelech, M. More than a drop in the bucket: decentralized membrane-based drinking water refill stations in southeast Asia. Environ. Sci. Technol. 47, 7580–7588 (2013).

    Article  CAS  Google Scholar 

  7. Werber, J. R., Deshmukh, A. & Elimelech, M. The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. Lett. 3, 112–120 (2016).

    Article  CAS  Google Scholar 

  8. Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V. & Kang, S. M. The state of desalination and brine production: a global outlook. Sci. Total Environ. 657, 1343–1356 (2019).

    Article  CAS  Google Scholar 

  9. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Article  Google Scholar 

  10. Yang, Z., Guo, H. & Tang, C. Y. Y. The upper bound of thin-film composite (TFC) polyamide membranes for desalination. J. Membr. Sci. 590, 117297 (2019).

    Article  Google Scholar 

  11. Bernstein, R., Belfer, S. & Freger, V. Toward improved boron removal in RO by membrane modification: feasibility and challenges. Environ. Sci. Technol. 45, 3613–3620 (2011).

    Article  CAS  Google Scholar 

  12. Lim, Y. J., Goh, K., Kurihara, M. & Wang, R. Seawater desalination by reverse osmosis: current development and future challenges in membrane fabrication – a review. J. Membr. Sci. 629, 119292 (2021).

    Article  CAS  Google Scholar 

  13. Akin, I., Arslan, G., Tor, A., Cengeloglu, Y. & Ersoz, M. Removal of arsenate [As(V)] and arsenite [As(III)] from water by SWHR and BW-30 reverse osmosis. Desalination 281, 88–92 (2011).

    Article  CAS  Google Scholar 

  14. Chen, A. S. C., Wang, L., Sorg, T. J. & Lytle, D. A. Removing arsenic and co-occurring contaminants from drinking water by full-scale ion exchange and point-of-use/point-of-entry reverse osmosis systems. Water Res. 172, 115455 (2020).

    Article  CAS  Google Scholar 

  15. Kimura, K., Toshima, S., Amy, G. & Watanabe, Y. Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes. J. Membr. Sci. 245, 71–78 (2004).

    Article  CAS  Google Scholar 

  16. Guo, H. et al. Tweak in puzzle: tailoring membrane chemistry and structure toward targeted removal of organic micropollutants for water reuse. Environ. Sci. Technol. Lett. 9, 247–257 (2022).

    Article  CAS  Google Scholar 

  17. Freger, V. & Ramon, G. Z. Polyamide desalination membranes: formation, structure, and properties. Prog. Polym. Sci. 122, 101451 (2021).

    Article  CAS  Google Scholar 

  18. Culp, T. E. et al. Nanoscale control of internal inhomogeneity enhances water transport in desalination membranes. Science 371, 72–75 (2021).

    Article  CAS  Google Scholar 

  19. Ma, X.-H. et al. Nanofoaming of polyamide desalination membranes to tune permeability and selectivity. Environ. Sci. Technol. Lett. 5, 123–130 (2018).

    Article  CAS  Google Scholar 

  20. Ukrainsky, B. & Ramon, G. Z. Temperature measurement of the reaction zone during polyamide film formation by interfacial polymerization. J. Membr. Sci. 566, 329–335 (2018).

    Article  CAS  Google Scholar 

  21. Peng, L. E. et al. Does interfacial vaporization of organic solvent affect the structure and separation properties of polyamide RO membranes? J. Membr. Sci. 625, 119173 (2021).

    Article  CAS  Google Scholar 

  22. Gan, Q., Peng, L. E., Guo, H., Yang, Z. & Tang, C. Y. Cosolvent-assisted interfacial polymerization toward regulating the morphology and performance of polyamide reverse osmosis membranes: increased m-phenylenediamine solubility or enhanced interfacial vaporization? Environ. Sci. Technol. 56, 10308–10316 (2022).

    Article  CAS  Google Scholar 

  23. Peng, L. E. et al. Tailoring polyamide rejection layer with aqueous carbonate chemistry for enhanced membrane separation: mechanistic insights, chemistry–structure–property relationship, and environmental implications. Environ. Sci. Technol. 53, 9764–9770 (2019).

    Article  CAS  Google Scholar 

  24. Song, X. et al. Intrinsic nanoscale structure of thin film composite polyamide membranes: connectivity, defects, and structure–property correlation. Environ. Sci. Technol. 54, 3559–3569 (2020).

    Article  CAS  Google Scholar 

  25. Song, X., Gan, B., Yang, Z., Tang, C. Y. & Gao, C. Confined nanobubbles shape the surface roughness structures of thin film composite polyamide desalination membranes. J. Membr. Sci. 582, 342–349 (2019).

    Article  CAS  Google Scholar 

  26. Gan, Q. et al. Nanofoamed polyamide membranes: mechanisms, developments, and environmental implications. Environ. Sci. Technol. 58, 20812–20829 (2024).

    Article  CAS  Google Scholar 

  27. Di Vincenzo, M. et al. Biomimetic artificial water channel membranes for enhanced desalination. Nat. Nanotechnol. 16, 190–196 (2021).

    Article  Google Scholar 

  28. Lin, L., Lopez, R., Ramon, G. Z. & Coronell, O. Investigating the void structure of the polyamide active layers of thin-film composite membranes. J. Membr. Sci. 497, 365–376 (2016).

    Article  CAS  Google Scholar 

  29. Wong, M. C. Y., Lin, L., Coronell, O., Hoek, E. M. V. & Ramon, G. Z. Impact of liquid-filled voids within the active layer on transport through thin-film composite membranes. J. Membr. Sci. 500, 124–135 (2016).

    Article  CAS  Google Scholar 

  30. Hu, Y. W., Wang, F., Yang, Z. & Tang, C. Y. Modeling nanovoid-enhanced water permeance of thin film composite membranes. J. Membr. Sci. 675, 121555 (2023).

    Article  CAS  Google Scholar 

  31. Wen, Y. et al. Metal-organic framework enables ultraselective polyamide membrane for desalination and water reuse. Sci. Adv. 8, eabm4149 (2022).

    Article  CAS  Google Scholar 

  32. Deshmukh, A., Lienhard, J. H. & Elimelech, M. Heat diffusion during thin-film composite membrane formation. J. Membr. Sci. 696, 122493 (2024).

    Article  CAS  Google Scholar 

  33. Jauffred, L., Samadi, A., Klingberg, H., Bendix, P. M. & Oddershede, L. B. Plasmonic heating of nanostructures. Chem. Rev. 119, 8087–8130 (2019).

    Article  CAS  Google Scholar 

  34. Naldoni, A., Shalaev, V. M. & Brongersma, M. L. Applying plasmonics to a sustainable future. Science 356, 908–909 (2017).

    Article  CAS  Google Scholar 

  35. Zhou, L. et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016).

    Article  Google Scholar 

  36. Zhan, C. et al. Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields. Sci. Adv. 7, eabf0962 (2021).

    Article  CAS  Google Scholar 

  37. Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100, 13549–13554 (2003).

    Article  CAS  Google Scholar 

  38. Huschka, R. et al. Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. J. Am. Chem. Soc. 133, 12247–12255 (2011).

    Article  CAS  Google Scholar 

  39. Liu, Y. et al. Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution. Nat. Commun. 14, 541 (2023).

    Article  CAS  Google Scholar 

  40. Shao, P. et al. Mixed-valence molybdenum oxide as a recyclable sorbent for silver removal and recovery from wastewater. Nat. Commun. 14, 1365 (2023).

    Article  CAS  Google Scholar 

  41. Bastus, N. G., Piella, J. & Puntes, V. Quantifying the sensitivity of multipolar (dipolar, quadrupolar, and octapolar) surface plasmon resonances in silver nanoparticles: the effect of size, composition, and surface coating. Langmuir 32, 290–300 (2016).

    Article  CAS  Google Scholar 

  42. Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011).

    Article  CAS  Google Scholar 

  43. Zhang, C., Hu, Z. & Deng, B. Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms. Water Res. 88, 403–427 (2016).

    Article  CAS  Google Scholar 

  44. Qi, D. et al. Polymeric membranes with selective solution-diffusion for intercepting volatile organic compounds during solar-driven water remediation. Adv. Mater. 32, e2004401 (2020).

    Article  Google Scholar 

  45. Shih, M.-C. An overview of arsenic removal by pressure-driven membrane processes. Desalination 172, 85–97 (2005).

    Article  CAS  Google Scholar 

  46. Conley, D. J. et al. Ecology. Controlling eutrophication: nitrogen and phosphorus. Science 323, 1014–1015 (2009).

    Article  CAS  Google Scholar 

  47. Ben-Sasson, M. et al. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Res. 62, 260–270 (2014).

    Article  CAS  Google Scholar 

  48. Yang, Z., Guo, H., Yao, Z. K., Mei, Y. & Tang, C. Y. Hydrophilic silver nanoparticles induce selective nanochannels in thin film nanocomposite polyamide membranes. Environ. Sci. Technol. 53, 5301–5308 (2019).

    Article  CAS  Google Scholar 

  49. Gan, Q. et al. Does surface roughness necessarily increase the fouling propensity of polyamide reverse osmosis membranes by humic acid? Environ. Sci. Technol. 57, 2548–2556 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the Research Grants Council (GRF HKU 17204220 to C.Y.T.) and the Innovation and Technology Fund (GHP/181/20GD to C.Y.T.) of the Hong Kong Special Administrative Region, China. Partial support was also received from the Seed Funding for Strategic Interdisciplinary Research Scheme (102010174 to C.Y.T.) and Outstanding Researcher Award (102010224 to C.Y.T.) at The University of Hong Kong, and the Scientific Research Startup Fund (QD2023012C to H.G.) of Tsinghua Shenzhen International Graduate School.

Author information

Authors and Affiliations

Authors

Contributions

Q.G. and H.G. developed the concept and designed the experiments and simulations. W.L. conducted the detection of various micropollutants. Q.X. performed the detection of anions. Z.Y. provided help with the fabrication and experiments. C.Y.T. secured funding and supervised the research project. Q.G., H.G., M.E. and C.Y.T. wrote and revised the manuscript. All co-authors participated in discussions and provided feedback on the manuscript.

Corresponding authors

Correspondence to Hao Guo, Menachem Elimelech or Chuyang Y. Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Zhongyi Jiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–43, discussion and Tables 1–7.

Reporting Summary

Source data

Source Data Fig. 1

Source data.

Source Data Fig. 3

Source data.

Source Data Fig. 4

Source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, Q., Liu, W., Xiao, Q. et al. Plasmonic nanoheating for versatile water purification membranes. Nat Sustain (2025). https://doi.org/10.1038/s41893-025-01636-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41893-025-01636-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing