Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decoupled dual-salt electrolyte for practical aqueous zinc batteries

Subjects

Abstract

Aqueous zinc batteries (AZBs) are promising for sustainable energy storage due to their safety and affordability. Conventional ‘lean-water’ electrolytes improve cell cyclability and the electrochemical stability window by stabilizing the interface; however, ionic transport in the bulk is limited and the use of high-concentration salt jeopardizes their practical adaptability. Here we report a dual-salt electrolyte involving ZnSO4 and Zn(ClO4)2 that decouples the interfacial chemistry from the bulk. Specifically, SO42− ions populate the Zn/electrolyte interface, whereas ClO4 anions dominate in the bulk. Strongly hydrated SO42− stabilizes interfacial water, while weakly hydrated ClO4 disrupts bulk hydrogen-bond networks, suppressing electrolyte freezing and enabling fast Zn2+ transport. In the absence of high salt concentrations and organic solvents, our decoupled electrolyte achieves a high ionic conductivity of 15.1 mS cm⁻1 and Zn plating/stripping reversibility of 99.97% at −40 °C. Assembled Zn//NaV3O8 pouch cells under practical configurations show a daily self-discharge rate of 0.13%, retain 93% capacity after 900 cycles at 25 °C, and deliver full capacity retention over 3,000 cycles at −40 °C. This decoupled dual-salt electrolyte advances the practical deployment of AZBs and offers a strategy for rational and sustainable electrolyte design beyond aqueous systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DDSE design.
Fig. 2: Physical properties and electrochemical performance of DDSE.
Fig. 3: Improved anodic stability enabled by DDSE.
Fig. 4: Electrochemical performance of NaV3O8 cathode.
Fig. 5: Electrolyte optimization and Zn//NaV3O8 pouch cells.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Information, which can also be available from the corresponding author upon request. Source data are provided with this paper and are also available in figshare at https://doi.org/10.6084/m9.figshare.29941601 (ref. 65).

References

  1. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016).

    Article  Google Scholar 

  2. Bauer, C. et al. Charging sustainable batteries. Nat. Sustain. 5, 176–178 (2022).

    Article  Google Scholar 

  3. Yang, C. et al. All-temperature zinc batteries with high-entropy aqueous electrolyte. Nat. Sustain. 6, 325–335 (2023).

    Article  Google Scholar 

  4. Larcher, D. & Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015).

    Article  CAS  Google Scholar 

  5. Innocenti, A., Bresser, D., Garche, J. & Passerini, S. A critical discussion of the current availability of lithium and zinc for use in batteries. Nat. Commun. 15, 4068 (2024).

    Article  CAS  Google Scholar 

  6. Han, D. et al. A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustain. 5, 205–213 (2021).

    Article  Google Scholar 

  7. Liang, Y. & Yao, Y. Designing modern aqueous batteries. Nat. Rev. Mater. 8, 109–122 (2022).

    Article  Google Scholar 

  8. Wang, F. et al. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018).

    Article  CAS  Google Scholar 

  9. Dong, D., Wang, T., Sun, Y., Fan, J. & Lu, Y.-C. Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes. Nat. Sustain. 6, 1474–1484 (2023).

    Article  Google Scholar 

  10. Ji, X. & Nazar, L. F. Best practices for zinc metal batteries. Nat. Sustain. 7, 98–99 (2024).

    Article  Google Scholar 

  11. Blanc, L. E., Kundu, D. & Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799 (2020).

    Article  CAS  Google Scholar 

  12. Yuan, L. et al. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 14, 5669–5689 (2021).

    Article  CAS  Google Scholar 

  13. Wang, Y. et al. Electrolyte engineering enables high performance zinc-ion batteries. Small 18, 2107033 (2022).

    Article  CAS  Google Scholar 

  14. Jiang, H. et al. Chloride electrolyte enabled practical zinc metal battery with a near-unity Coulombic efficiency. Nat. Sustain. 6, 806–815 (2023).

    Article  Google Scholar 

  15. Zhang, C. et al. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54, 14097–14099 (2018).

    Article  CAS  Google Scholar 

  16. Zhu, Y. et al. Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ. Sci. 14, 4463–4473 (2021).

    Article  CAS  Google Scholar 

  17. Wang, Y. et al. Solvent control of water O-H bonds for highly reversible zinc ion batteries. Nat. Commun. 14, 2720 (2023).

    Article  CAS  Google Scholar 

  18. Wang, W. et al. Regulating interfacial reaction through electrolyte chemistry enables gradient interphase for low-temperature zinc metal batteries. Nat. Commun. 14, 5443 (2023).

    Article  CAS  Google Scholar 

  19. Wu, Z., Li, Y. & Liu, J. Coulombic efficiency for practical zinc metal batteries: critical analysis and perspectives. Small Methods 8, 2300660 (2023).

    Article  Google Scholar 

  20. Liu, S. et al. Zinc ion batteries: bridging the gap from academia to industry for grid-scale energy storage. Angew. Chem. Int. Ed. 63, e202400045 (2024).

    Article  CAS  Google Scholar 

  21. Shi, X. et al. A weakly solvating electrolyte towards practical rechargeable aqueous zinc-ion batteries. Nat. Commun. 15, 302 (2024).

    Article  CAS  Google Scholar 

  22. Cho, Y. & Gabbar, H. A. Review of energy storage technologies in harsh environment. Saf. Extreme Environ. 1, 11–25 (2019).

    Article  Google Scholar 

  23. Zhang, N. et al. Critical review on low‐temperature Li‐ion/metal batteries. Adv. Mater. 34, 2107899 (2022).

    Article  CAS  Google Scholar 

  24. Zhang, Q. et al. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11, 4463 (2020).

    Article  CAS  Google Scholar 

  25. Lyu, Y. et al. Organic pH buffer for dendrite‐free and shuttle‐free Zn‐I2 batteries. Angew. Chem. Int. Ed. 135, e202303011 (2023).

    Article  Google Scholar 

  26. Wan, J. et al. Hydrated eutectic electrolyte induced bilayer interphase for high-performance aqueous Zn-ion batteries with 100 °C wide-temperature range. Adv. Mater. 36, e2310623 (2024).

    Article  Google Scholar 

  27. Dong, Y. et al. Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries. Chem. Sci. 12, 5843–5852 (2021).

    Article  CAS  Google Scholar 

  28. Zhang, Q. et al. Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries. ACS Energy Lett. 6, 2704–2712 (2021).

    Article  CAS  Google Scholar 

  29. Sun, T., Zheng, S., Du, H. & Tao, Z. Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13, 204 (2021).

    Article  CAS  Google Scholar 

  30. You, C. et al. Design strategies for anti-freeze electrolytes in aqueous energy storage devices at low temperatures. Adv. Funct. Mater. 34, 2403616 (2024).

    Article  CAS  Google Scholar 

  31. Yu, X. et al. Unlocking dynamic solvation chemistry and hydrogen evolution mechanism in aqueous zinc batteries. J. Am. Chem. Soc. 146, 17103–17113 (2024).

    Article  CAS  Google Scholar 

  32. Ru, M. T. et al. On the salt-induced activation of lyophilized enzymes in organic solvents: effect of salt kosmotropicity on enzyme activity. J. Am. Chem. Soc. 122, 1565–1571 (2000).

    Article  CAS  Google Scholar 

  33. Takenaka, N., Ko, S., Kitada, A. & Yamada, A. Liquid Madelung energy accounts for the huge potential shift in electrochemical systems. Nat. Commun. 15, 1319 (2024).

    Article  CAS  Google Scholar 

  34. Zhang, R. et al. Weakly solvating aqueous-based electrolyte facilitated by a soft co-solvent for extreme temperature operations of zinc-ion batteries. Energy Environ. Sci. 17, 4569–4581 (2024).

    Article  CAS  Google Scholar 

  35. Tan, H. et al. Breaking the ice: Hofmeister effect-inspired hydrogen bond network reconstruction in hydrogel electrolytes for high-performance zinc-ion batteries. Small 21, e2410746 (2025).

    Article  Google Scholar 

  36. Huang, S., Hou, L., Li, T., Jiao, Y. & Wu, P. Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 34, e2110140 (2022).

    Article  Google Scholar 

  37. Pestova, O. N. et al. Structural inhomogeneity in electrolyte solutions: the calcium perchlorate–water system. J. Solut. Chem. 46, 1854–1870 (2017).

    Article  CAS  Google Scholar 

  38. Brandán, S. A. Theoretical study of the structure and vibrational spectra of chromyl perchlorate, CrO2(ClO4)2. J. Mol. Struct. 908, 19–25 (2009).

    Article  Google Scholar 

  39. Liu, X. et al. Boosting SO2-tolerant catalytic reduction of NOx via selective adsorption and activation of reactants over Ce4+–SO42– pair sites. ACS Catal. 12, 11306–11317 (2022).

    Article  CAS  Google Scholar 

  40. Wang, X. et al. Probing of photocatalytic surface sites on SO42−/TiO2 solid acids by in situ FT-IR spectroscopy and pyridine adsorption. J. Photochem. Photobiol. A 179, 339–347 (2006).

    Article  CAS  Google Scholar 

  41. Huang, Z. et al. Effects of anion carriers on capacitance and self-discharge behaviors of zinc ion capacitors. Angew. Chem. Int. Ed. 133, 1024–1034 (2020).

    Article  Google Scholar 

  42. Deng, W. et al. The mechanism and regulation of the electrosorption selectivity of inorganic anions during capacitive deionization. New J. Chem. 45, 16722–16731 (2021).

    Article  CAS  Google Scholar 

  43. Xu, K. et al. Steering CO2 electroreduction selectivity towards CH4 and C2H4 on a tannic acid-modified Cu electrode. Mater. Chem. Front. 7, 1395–1402 (2023).

    Article  CAS  Google Scholar 

  44. Ataka, K.-i & Osawa, M. In situ infrared study of water−sulfate coadsorption on gold(111) in sulfuric acid solutions. Langmuir 14, 951–959 (1998).

    Article  CAS  Google Scholar 

  45. Yamada, Y. et al. Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat. Energy 1, 16129 (2016).

    Article  CAS  Google Scholar 

  46. Ko, S. et al. Electrode potential influences the reversibility of lithium-metal anodes. Nat. Energy 7, 1217–1224 (2022).

    Article  CAS  Google Scholar 

  47. Kim, S. C. et al. Potentiometric measurement to probe solvation energy and its correlation to lithium battery cyclability. J. Am. Chem. Soc. 143, 10301–10308 (2021).

    Article  CAS  Google Scholar 

  48. Murphy, L. R., Meek, T. L., Allred, A. L. & Allen, L. C. Evaluation and test of Pauling’s electronegativity scale. J. Phys. Chem. A 104, 5867–5871 (2000).

    Article  CAS  Google Scholar 

  49. Fugel, M. et al. Revisiting a historical concept by using quantum crystallography: are phosphate, sulfate and perchlorate anions hypervalent? Chem. Eur. J. 25, 6523–6532 (2019).

    Article  CAS  Google Scholar 

  50. Islam, S. et al. Triggering the theoretical capacity of Na1.1V3O7.9 nanorod cathode by polypyrrole coating for high-energy zinc-ion batteries. Chem. Eng. J. 446, 137069 (2022).

    Article  CAS  Google Scholar 

  51. Li, G. et al. Developing cathode materials for aqueous zinc ion batteries: challenges and practical prospects. Adv. Funct. Mater. 34, 2301291 (2023).

    Article  Google Scholar 

  52. Kim, Y. et al. Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries. Nat. Commun. 13, 2371 (2022).

    Article  CAS  Google Scholar 

  53. Liu, D. S. et al. Manipulating OH-mediated anode-cathode cross-communication toward long-life aqueous zinc-vanadium batteries. Angew. Chem. Int. Ed. 62, e202215385 (2023).

    Article  CAS  Google Scholar 

  54. Zhong, Y. et al. An in-depth study of heterometallic interface chemistry: bi-component layer enables highly reversible and stable Zn metal anodes. Energy Storage Mater. 55, 575–586 (2023).

    Article  Google Scholar 

  55. Zhu, S. et al. Cathodic Zn underpotential deposition: an evitable degradation mechanism in aqueous zinc-ion batteries. Sci. Bull. 67, 1882–1889 (2022).

    Article  CAS  Google Scholar 

  56. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

    Article  CAS  Google Scholar 

  57. Sousa da Silva, A. W. & Vranken, W. F. Sousa da Silva, A. W. & Vranken, W. F. ACPYPE—AnteChamber PYthon Parser interface. BMC Res. Notes 5, 367 (2012).

    Article  Google Scholar 

  58. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  59. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  60. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  61. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  62. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  63. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  64. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  65. Li, G. et al. Decoupled dual-salt electrolyte for practical aqueous zinc batteries. figshare https://doi.org/10.6084/m9.figshare.29941601 (2025).

Download references

Acknowledgements

This work was supported by the Australian Research Council (FL210100050 Z.G. and DE240100159 S.Z.). G.L. was supported by scholarships from the China Scholarship Council (grant no. 202006750014 to G.L.). J.A.Y. acknowledges the high-performance computing facilities provided by National Computational Infrastructure (NCI) Australia. Components of this research were undertaken on the powder diffraction and SAXS/wide-angle X-ray scattering beamlines at the Australian Synchrotron, part of ANSTO, through the merit-based beamtime proposals (M21781 to S.Z., M21924 to G.L.). We thank Q. Gu for invaluable support and expertise in our powder diffraction experiments; K. Davey for valuable insights and contributions to this work, and we remember him with deep gratitude; C. Wang for providing valuable guidance on the conceptual development of this paper; C. Zhang for valuable assistance with the QCM measurements; and T. Lu for support with the Kelvin probe force microscopy measurements.

Author information

Authors and Affiliations

Authors

Contributions

G.L., S.Z. and Z.G. conceived the research idea. G.L. and S.Z. designed the experiments. G.L., Q.C. and L.M. performed electrochemical measurements and material characterizations. J.A.Y. conducted the theoretical calculations. All authors discussed the results and contributed to the data analysis. G.L. and S.Z. wrote the paper with contributions from all authors. H.J. and Z.G. assisted in revising the paper. S.Z. and Z.G. supervised the work.

Corresponding authors

Correspondence to Shilin Zhang or Zaiping Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Daliang Han, Guanjie He and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–87 and Tables 1–3.

Reporting Summary

Source data

Source Data Figs. 1–5

Statistical source data for Figs. 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Cai, Q., Zhang, S. et al. Decoupled dual-salt electrolyte for practical aqueous zinc batteries. Nat Sustain (2025). https://doi.org/10.1038/s41893-025-01646-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41893-025-01646-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing