Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A seamless graphene spin valve based on proximity to van der Waals magnet Cr2Ge2Te6

Abstract

Pristine graphene is potentially an ideal medium for transporting spin information. Proximity effects—where a neighbouring material is used to alter the properties of a material in adjacent (or proximitized) regions—can also be used in graphene to generate and detect spins by acquiring spin–orbit coupling or magnetic exchange coupling. However, the development of seamless spintronic devices that are based only on proximity effects remains challenging. Here we report a two-dimensional graphene spin valve that is enabled by proximity to the van der Waals magnet Cr2Ge2Te6. Spin precession measurements show that the graphene acquires both spin–orbit coupling and magnetic exchange coupling when interfaced with the Cr2Ge2Te6. This leads to spin generation by both electrical spin injection and the spin Hall effect, while retaining spin transport. The simultaneous presence of spin–orbit coupling and magnetic exchange coupling also leads to a sizeable anomalous Hall effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Charge-to-spin conversion in a graphene/CGT van der Waals heterostructure.
Fig. 2: SHE and ESI measurements of CGT-proximitized graphene.
Fig. 3: All-2D lateral spin valve with two CGT-proximitized graphene regions.
Fig. 4: AHE in CGT-proximitized graphene.

Similar content being viewed by others

Data availability

Source data in the paper are available via figshare at https://doi.org/10.6084/m9.figshare.22815824 (ref. 58). Any further data used in this study are available from the corresponding authors upon reasonable request.

References

  1. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  MATH  Google Scholar 

  2. Maekawa, S., Valenzuela, S. O., Saitoh, E. & Kimura, T. Spin Current (Oxford Univ. Press, 2017).

  3. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  4. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  Google Scholar 

  5. Bihlmayer, G., Noël, P., Vyalikh, D. V., Chulkov, E. V. & Manchon, A. Rashba-like physics in condensed matter. Nat. Rev. Phys. 4, 642–659 (2022).

    Article  Google Scholar 

  6. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin-orbit coupling. Nat. Mater. 14, 871–882 (2015).

    Article  MATH  Google Scholar 

  7. Hellman, F. et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 89, 025006 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  8. Žutić, I., Matos-Abiague, A., Scharf, B., Dery, H. & Belashchenko, K. Proximitized materials. Mater. Today 22, 85–107 (2019).

    Article  Google Scholar 

  9. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, 6298 (2016).

    Article  Google Scholar 

  10. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  MATH  Google Scholar 

  11. Safeer, C. K. et al. Spin Hall effect in bilayer graphene combined with an insulator up to room temperature. Nano Lett. 20, 4573–4579 (2020).

    Article  MATH  Google Scholar 

  12. Benítez, L. A. et al. Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures. Nat. Mater. 19, 170–175 (2019).

    Article  MATH  Google Scholar 

  13. Island, J. O. et al. Spin–orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect. Nature 571, 85–89 (2019).

    Article  Google Scholar 

  14. Herling, F. et al. Gate tunability of highly efficient spin-to-charge conversion by spin Hall effect in graphene proximitized with WSe2. APL Mater. 8, 071103 (2020).

    Article  MATH  Google Scholar 

  15. Ghiasi, T. S. et al. Electrical and thermal generation of spin currents by magnetic bilayer graphene. Nat. Nanotechnol. 16, 788–794 (2021).

    Article  MATH  Google Scholar 

  16. Wang, Z., Tang, C., Sachs, R., Barlas, Y. & Shi, J. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect. Phys. Rev. Lett. 114, 016603 (2015).

    Article  Google Scholar 

  17. Sierra, J. F., Fabian, J., Kawakami, R. K., Roche, S. & Valenzuela, S. O. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 16, 856–868 (2021).

    Article  Google Scholar 

  18. Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotechnol. 9, 794–807 (2014).

    Article  Google Scholar 

  19. Avsar, A. et al. Colloquium: spintronics in graphene and other two-dimensional materials. Rev. Mod. Phys. 92, 21003 (2020).

    Article  MATH  Google Scholar 

  20. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

    Article  Google Scholar 

  21. Ghiasi, T. S., Kaverzin, A. A., Blah, P. J. & Van Wees, B. J. Charge-to-spin conversion by the Rashba-Edelstein effect in two-dimensional van der Waals heterostructures up to room temperature. Nano Lett. 19, 5959–5966 (2019).

    Article  Google Scholar 

  22. Wang, Y. et al. Quantum Hall phase in graphene engineered by interfacial charge coupling. Nat. Nanotechnol. 17, 1272–1279 (2022).

    Article  MATH  Google Scholar 

  23. Wu, Y. et al. Large exchange splitting in monolayer graphene magnetized by an antiferromagnet. Nat. Electron. 3, 604–611 (2020).

    Article  MATH  Google Scholar 

  24. Ghazaryan, D. et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat. Electron. 1, 344–349 (2018).

    Article  MATH  Google Scholar 

  25. Karpiak, B. et al. Magnetic proximity in a van der Waals heterostructure of magnetic insulator and graphene. 2D Mater. 7, 015026 (2020).

    Article  MATH  Google Scholar 

  26. Safeer, C. K. et al. Room-temperature spin Hall effect in graphene/MoS2 van der Waals heterostructures. Nano Lett. 19, 1074–1082 (2019).

    Article  MATH  Google Scholar 

  27. Khokhriakov, D., Hoque, A. M., Karpiak, B. & Dash, S. P. Gate-tunable spin-galvanic effect in graphene-topological insulator van der Waals heterostructures at room temperature. Nat. Commun. 11, 3657 (2020).

    Article  Google Scholar 

  28. Yang, B. et al. Electrostatically controlled spin polarization in Graphene-CrSBr magnetic proximity heterostructures. Nat. Commun. 15, 4459 (2024).

    Article  MATH  Google Scholar 

  29. Ingla-Aynés, J., Herling, F., Fabian, J., Hueso, L. E. & Casanova, F. Electrical control of valley-Zeeman spin-orbit-coupling–induced spin precession at room temperature. Phys. Rev. Lett. 127, 047202 (2021).

    Article  Google Scholar 

  30. Zollner, K., Gmitra, M. & Fabian, J. Swapping exchange and spin-orbit coupling in 2D van der Waals heterostructures. Phys. Rev. Lett. 125, 196402 (2020).

    Article  Google Scholar 

  31. Offidani, M. & Ferreira, A. Anomalous Hall effect in 2D Dirac materials. Phys. Rev. Lett. 121, 126802 (2018).

    Article  MATH  Google Scholar 

  32. Chau, T. K., Hong, S. J., Kang, H. & Suh, D. Two-dimensional ferromagnetism detected by proximity-coupled quantum Hall effect of graphene. npj Quantum Mater. 7, 27 (2022).

    Article  MATH  Google Scholar 

  33. Ji, H. et al. A ferromagnetic insulating substrate for the epitaxial growth of topological insulators. J. Appl. Phys. 114, 114907 (2013).

    Article  MATH  Google Scholar 

  34. Verzhbitskiy, I. A. et al. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating. Nat. Electron. 3, 460–465 (2020).

    Article  MATH  Google Scholar 

  35. Ostwal, V., Shen, T. & Appenzeller, J. Efficient spin‐orbit torque switching of the semiconducting van der Waals ferromagnet Cr2Ge2Te6. Adv. Mater. 32, 1906021 (2020).

    Article  MATH  Google Scholar 

  36. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  MATH  Google Scholar 

  37. Noah, A. et al. Interior and edge magnetization in thin exfoliated CrGeTe3 films. Nano Lett. 22, 3165–3172 (2022).

    Article  MATH  Google Scholar 

  38. Safeer, C. K. et al. Reliability of spin-to-charge conversion measurements in graphene-based lateral spin valves. 2D Mater. 9, 015024 (2022).

    Article  MATH  Google Scholar 

  39. Ingla-Aynés, J. et al. Omnidirectional spin-to-charge conversion in graphene/NbSe2 van der Waals heterostructures. 2D Mater. 9, 045001 (2022).

    Article  MATH  Google Scholar 

  40. Safeer, C. K. et al. Large multidirectional spin-to-charge conversion in low-symmetry semimetal MoTe2 at room temperature. Nano Lett. 19, 8758–8766 (2019).

    Article  MATH  Google Scholar 

  41. Ontoso, N. et al. Unconventional charge-to-spin conversion in graphene/MoTe2 van der Waals heterostructures. Phys. Rev. Appl. 19, 014053 (2023).

    Article  Google Scholar 

  42. Camosi, L. et al. Resolving spin currents and spin densities generated by charge-spin interconversion in systems with reduced crystal symmetry. 2D Mater. 9, 035014 (2022).

    Article  MATH  Google Scholar 

  43. Yang, H. et al. Twist-angle tunable spin texture in WSe2/graphene van der Waals heterostructures. Nat. Mater. https://doi.org/10.1038/s41563-024-01985-y (2024).

  44. Taniguchi, T., Grollier, J. & Stiles, M. D. Spin-transfer torques generated by the anomalous Hall effect and anisotropic magnetoresistance. Phys. Rev. Appl. 3, 044001 (2015).

    Article  Google Scholar 

  45. Iihama, S. et al. Spin-transfer torque induced by the spin anomalous Hall effect. Nat. Electron. 1, 120–123 (2018).

    Article  Google Scholar 

  46. Céspedes‐Berrocal, D. et al. Current‐induced spin torques on single GdFeCo magnetic layers. Adv. Mater. 33, 2007047 (2021).

    Article  Google Scholar 

  47. Baek, S. H. C. et al. Spin currents and spin-orbit torques in ferromagnetic trilayers. Nat. Mater. 17, 509–513 (2018).

    Article  MATH  Google Scholar 

  48. Salemi, L. & Oppeneer, P. M. Theory of magnetic spin and orbital Hall and Nernst effects in bulk ferromagnets. Phys. Rev. B 106, 024410 (2022).

    Article  Google Scholar 

  49. Villamor, E., Isasa, M., Hueso, L. E. & Casanova, F. Temperature dependence of spin polarization in ferromagnetic metals using lateral spin valves. Phys. Rev. B 88, 184411 (2013).

    Article  Google Scholar 

  50. Kimura, T., Hamrle, J. & Otani, Y. Spin-polarized current induced in a single ferromagnetic strip due to inhomogeneous spin injection. J. Appl. Phys. 97, 076102 (2005).

    Article  MATH  Google Scholar 

  51. Zollner, K. & Fabian, J. Engineering proximity exchange by twisting: reversal of ferromagnetic and emergence of antiferromagnetic Dirac bands in graphene/Cr2Ge2Te6. Phys. Rev. Lett. 128, 106401 (2022).

    Article  Google Scholar 

  52. Jaffrès, H., George, J.-M. & Fert, A. Spin transport in multiterminal devices: large spin signals in devices with confined geometry. Phys. Rev. B 82, 140408 (2010).

    Article  Google Scholar 

  53. Zhuo, W. et al. Manipulating ferromagnetism in few‐layered Cr2Ge2Te6. Adv. Mater. 33, 2008586 (2021).

    Article  Google Scholar 

  54. Lee, Y. et al. The magnetic states of a van der Waals ferromagnet CrGeTe3 probed by vector-field magnetic force microscopy. Appl. Phys. Lett. 124, 130601 (2024).

    Article  Google Scholar 

  55. Song, G., Ranjbar, M., Daughton, D. R. & Kiehl, R. A. Nanoparticle-induced anomalous Hall effect in graphene. Nano Lett. 19, 7112–7118 (2019).

    Article  MATH  Google Scholar 

  56. Tang, C. et al. Approaching quantum anomalous Hall effect in proximity-coupled YIG/graphene/h-BN sandwich structure. APL Mater. 6, 026401 (2018).

    Article  Google Scholar 

  57. Qiao, Z. et al. Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator. Phys. Rev. Lett. 112, 116404 (2014).

    Article  MATH  Google Scholar 

  58. Yang, H. et al. A seamless graphene spin valve based on proximity to van der Waals magnet Cr2Ge2Te6. figshare https://doi.org/10.6084/m9.figshare.22815824 (2024).

Download references

Acknowledgements

We thank V. Amin for useful discussions. We acknowledge funding from the Valleytronics Intel Science and Technology Center, from MICIU/AEI/10.13039/501100011033 (Grant No. CEX2020-001038-M), from MICIU/AEI and ERDF/EU (Project Nos. PID2021-122511OB-I00 and PID2021-128004NB-C21), from MICIU/AEI and the European Union NextGenerationEU/PRTR (Project No. PCI2021-122038-2A) and from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie Grant Agreement No. 766025. H.Y. acknowledges support from the National Natural Science Foundation of China (Grant Nos. 62404014, 92164206 and 52261145694). B.M.-G. and M.G. acknowledge support from MICIU/AEI and the European Union NextGenerationEU/PRTR (Grant Nos. RYC2021-034836-I and RYC2021-031705-I, respectively). A.F. acknowledges the support of the University of the Basque Country as a distinguished researcher.

Author information

Authors and Affiliations

Authors

Contributions

H.Y. and F. Casanova conceived the study. H.Y. fabricated the samples with the help of F.H. H.Y. performed the electrical measurements with the help of F. Calavalle and F.H. B.M.-G and H.Y. performed the Raman spectroscopy measurements. V.T.P and H.Y. performed the finite element simulations. H.Y., M.G., A.F., L.E.H. and F. Casanova analysed the data and discussed the experiments. All authors contributed to the discussion of the results and their interpretation. H.Y., M.G. and F. Casanova wrote the paper with input from all authors.

Corresponding authors

Correspondence to Haozhe Yang or Fèlix Casanova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Jing Shi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–11 and Figs. 1–9.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Gobbi, M., Herling, F. et al. A seamless graphene spin valve based on proximity to van der Waals magnet Cr2Ge2Te6. Nat Electron 8, 15–23 (2025). https://doi.org/10.1038/s41928-024-01267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41928-024-01267-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing