Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuromorphic weighted sums with magnetic skyrmions

Abstract

Integrating magnetic skyrmions into neuromorphic computing could help improve hardware efficiency and computational power. However, developing a scalable implementation of the weighted sum of neuron signals—a core operation in neural networks—has remained a challenge. Here we show that weighted sum operations can be performed in a compact, biologically inspired manner by using the non-volatile and particle-like characteristics of magnetic skyrmions that make them easily countable and summable. The skyrmions are electrically generated in numbers proportional to an input with an efficiency given by a non-volatile weight. The chiral particles are then directed using localized current injections to a location in which their presence is quantified through non-perturbative electrical measurements. Our experimental demonstration, which currently has two inputs, can be scaled to accommodate multiple inputs and outputs using a crossbar-array design, potentially nearing the energy efficiency observed in biological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Skyrmionic weighted sum building blocks.
Fig. 2: Controlled nucleation of magnetic skyrmions at a notch using current pulses as inputs and weight fine-tuning.
Fig. 3: Non-perturbative electrical detection of the number of skyrmions using thin Ta electrodes.
Fig. 4: Weighted sum in a device composed of two parallel multilayer tracks.
Fig. 5: Characteristics of a scaled neuromorphic computing device.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available via Zenodo at https://doi.org/10.5281/zenodo.13988409 (ref. 60). Other relevant data are available from the corresponding authors on request.

References

  1. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article  Google Scholar 

  2. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).

    Article  MATH  Google Scholar 

  3. Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    Article  Google Scholar 

  4. Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    Article  MATH  Google Scholar 

  5. Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).

    Article  MATH  Google Scholar 

  6. Legrand, W. et al. Room-temperature current-induced generation and motion of sub-100 nm skyrmions. Nano Lett. 17, 2703–2712 (2017).

    Article  MATH  Google Scholar 

  7. Büttner, F. et al. Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques. Nat. Nanotechnol. 12, 1040–1044 (2017).

    Article  MATH  Google Scholar 

  8. Soumyanarayanan, A. et al. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nat. Mater. 16, 898–904 (2017).

    Article  MATH  Google Scholar 

  9. Finizio, S. et al. Deterministic field-free skyrmion nucleation at a nanoengineered injector device. Nano Lett. 19, 7246–7255 (2019).

    Article  MATH  Google Scholar 

  10. Wang, Z. et al. Thermal generation, manipulation and thermoelectric detection of skyrmions. Nat. Electron. 3, 672–679 (2020).

    Article  MATH  Google Scholar 

  11. Woo, S. et al. Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved X-ray microscopy. Nat. Electron. 1, 288–296 (2018).

    Article  MATH  Google Scholar 

  12. Yang, S. et al. Electrical generation and deletion of magnetic skyrmion-bubbles via vertical current injection. Adv. Mater. 33, 2104406 (2021).

    Article  Google Scholar 

  13. Maccariello, D. et al. Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature. Nat. Nanotechnol. 13, 233–237 (2018).

    Article  Google Scholar 

  14. Zeissler, K. et al. Discrete Hall resistivity contribution from Néel skyrmions in multilayer nanodiscs. Nat. Nanotechnol. 13, 1161–1166 (2018).

    Article  MATH  Google Scholar 

  15. Hanneken, C. et al. Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance. Nat. Nanotechnol. 10, 1039–1042 (2015).

    Article  MATH  Google Scholar 

  16. Chen, S. et al. All-electrical skyrmionic magnetic tunnel junction. Nature 627, 522–527 (2024).

    Article  Google Scholar 

  17. Urrestarazu Larrañaga, J. et al. Electrical detection and nucleation of a magnetic skyrmion in a magnetic tunnel junction observed via operando magnetic microscopy. Nano Lett. 24, 3557–3565 (2024).

    Article  MATH  Google Scholar 

  18. Bourianoff, G., Pinna, D., Sitte, M. & Everschor-Sitte, K. Potential implementation of reservoir computing models based on magnetic skyrmions. AIP Adv. 8, 055602 (2018).

    Article  MATH  Google Scholar 

  19. Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron. 3, 148–155 (2020).

    Article  MATH  Google Scholar 

  20. Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).

    Article  Google Scholar 

  21. Huang, Y., Kang, W., Zhang, X., Zhou, Y. & Zhao, W. Magnetic skyrmion-based synaptic devices. Nanotechnology 28, 08LT02 (2017).

    Article  Google Scholar 

  22. Sharad, M., Augustine, C., Panagopoulos, G. & Roy, K. Spin-based neuron model with domain-wall magnets as synapse. IEEE Trans. Nanotechnol. 11, 843–853 (2012).

    Article  MATH  Google Scholar 

  23. Chen, R. et al. Nanoscale room-temperature multilayer skyrmionic synapse for deep spiking neural networks. Phys. Rev. Appl. 14, 014096 (2020).

    Article  Google Scholar 

  24. Pinna, D. et al. Skyrmion gas manipulation for probabilistic computing. Phys. Rev. Appl. 9, 064018 (2018).

    Article  MATH  Google Scholar 

  25. Zázvorka, J. et al. Thermal skyrmion diffusion used in a reshuffler device. Nat. Nanotechnol. 14, 658–661 (2019).

    Article  MATH  Google Scholar 

  26. Prychynenko, D. et al. Magnetic skyrmion as a nonlinear resistive element: a potential building block for reservoir computing. Phys. Rev. Appl. 9, 014034 (2018).

    Article  Google Scholar 

  27. Raab, K. et al. Brownian reservoir computing realized using geometrically confined skyrmion dynamics. Nat. Commun. 13, 6982 (2022).

    Article  MATH  Google Scholar 

  28. Yokouchi, T. et al. Pattern recognition with neuromorphic computing using magnetic field–induced dynamics of skyrmions. Sci. Adv. 8, eabq5652 (2023).

    Article  MATH  Google Scholar 

  29. Sun, Y. et al. Experimental demonstration of a skyrmion-enhanced strain-mediated physical reservoir computing system. Nat. Commun. 14, 3434 (2023).

    Article  MATH  Google Scholar 

  30. Frenkel, C., Lefebvre, M., Legat, J.-D. & Bol, D. A 0.086-mm2 12.7-pJ/SOP 64k-synapse 256-neuron online-learning digital spiking neuromorphic processor in 28-nm CMOS. IEEE Trans. Biomed. Circuits Syst. 13, 145–158 (2019).

    Google Scholar 

  31. Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. J. Cerebr. Blood Flow Metab. 21, 1133–1145 (2001).

    Article  MATH  Google Scholar 

  32. Harris, J. J., Jolivet, R. & Attwell, D. Synaptic energy use and supply. Neuron 75, 762–777 (2012).

    Article  MATH  Google Scholar 

  33. Chanaday, N. L., Cousin, M. A., Milosevic, I., Watanabe, S. & Morgan, J. R. The synaptic vesicle cycle revisited: new insights into the modes and mechanisms. J. Neurosci. 39, 8209–8216 (2019).

    Article  Google Scholar 

  34. Kent, N. et al. Creation and observation of hopfions in magnetic multilayer systems. Nat. Commun. 12, 1562 (2021).

    Article  MATH  Google Scholar 

  35. Grelier, M. et al. Three-dimensional skyrmionic cocoons in magnetic multilayers. Nat. Commun. 13, 6843 (2022).

    Article  MATH  Google Scholar 

  36. Krishnia, S. et al. Large interfacial Rashba interaction generating strong spin–orbit torques in atomically thin metallic heterostructures. Nano Lett. 23, 6785–6791 (2023).

    Article  MATH  Google Scholar 

  37. Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017).

    Article  MATH  Google Scholar 

  38. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).

    Article  MATH  Google Scholar 

  39. He, B. et al. All-electrical 9-bit skyrmion-based racetrack memory designed with laser irradiation. Nano Lett. 23, 9482–9490 (2023).

  40. Figueiredo-Prestes, N. et al. Magnetization switching and deterministic nucleation in Co/Ni multilayered disks induced by spin-orbit torques. Appl. Phys. Lett. 119, 032410 (2021).

    Article  Google Scholar 

  41. Ambrogio, S. et al. An analog-AI chip for energy-efficient speech recognition and transcription. Nature 620, 768–775 (2023).

    Article  MATH  Google Scholar 

  42. Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).

    Article  MATH  Google Scholar 

  43. Azghadi, M. R. et al. Hardware implementation of deep network accelerators towards healthcare and biomedical applications. IEEE Trans. Biomed. Circuits Syst. 14, 1138–1159 (2020).

    Article  MATH  Google Scholar 

  44. Krishnia, S. et al. Quantifying the large contribution from orbital Rashba-Edelstein effect to the effective damping-like torque on magnetization. APL Mater. 12, 051105 (2024).

    Article  MATH  Google Scholar 

  45. Schott, M. et al. The skyrmion switch: turning magnetic skyrmion bubbles on and off with an electric field. Nano Lett. 17, 3006–3012 (2017).

    Article  MATH  Google Scholar 

  46. Bhattacharya, D. et al. Creation and annihilation of non-volatile fixed magnetic skyrmions using voltage control of magnetic anisotropy. Nat. Electron. 3, 539–545 (2020).

    Article  MATH  Google Scholar 

  47. Bernand-Mantel, A. et al. Electric-field control of domain wall nucleation and pinning in a metallic ferromagnet. Appl. Phys. Lett. 102, 122406 (2013).

    Article  MATH  Google Scholar 

  48. Bauer, U. et al. Magneto-ionic control of interfacial magnetism. Nat. Mater. 14, 174–181 (2015).

    Article  MATH  Google Scholar 

  49. Herrera Diez, L. et al. Nonvolatile ionic modification of the Dzyaloshinskii-Moriya interaction. Phys. Rev. Appl. 12, 034005 (2019).

    Article  MATH  Google Scholar 

  50. Srivastava, T. et al. Large-voltage tuning of Dzyaloshinskii–Moriya interactions: a route toward dynamic control of skyrmion chirality. Nano Lett. 18, 4871–4877 (2018).

    Article  MATH  Google Scholar 

  51. Fillion, C.-E. et al. Gate-controlled skyrmion and domain wall chirality. Nat. Commun. 13, 5257 (2022).

    Article  MATH  Google Scholar 

  52. Dai, B. et al. Electric field manipulation of spin chirality and skyrmion dynamic. Sci. Adv. 9, eade6836 (2023).

    Article  Google Scholar 

  53. Mishra, R., Kumar, D. & Yang, H. Oxygen-migration-based spintronic device emulating a biological synapse. Phys. Rev. Appl. 11, 054065 (2019).

    Article  MATH  Google Scholar 

  54. da Câmara Santa Clara Gomes, T. et al. Control of the magnetic anisotropy in multirepeat Pt/Co/Al heterostructures using magnetoionic gating. Phys. Rev. Appl. 21, 024010 (2024).

    Article  MATH  Google Scholar 

  55. Legrand, W. et al. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat. Mater. 19, 34–42 (2020).

    Article  MATH  Google Scholar 

  56. Juge, R. et al. Current-driven skyrmion dynamics and drive-dependent skyrmion Hall effect in an ultrathin film. Phys. Rev. Appl. 12, 044007 (2019).

    Article  MATH  Google Scholar 

  57. Litzius, K. et al. The role of temperature and drive current in skyrmion dynamics. Nat. Electron. 3, 30–36 (2020).

    Article  Google Scholar 

  58. He, Z. & Fan, D. A tunable magnetic skyrmion neuron cluster for energy efficient artificial neural network. In Design, Automation & Test in Europe Conference & Exhibition (DATE) 2017 350–355 (IEEE, 2017).

  59. Raymenants, E. et al. Nanoscale domain wall devices with magnetic tunnel junction read and write. Nat. Electron. 4, 392–398 (2021).

    Article  Google Scholar 

  60. da Câmara Santa Clara Gomes, T. et al. Data for: Neuromorphic weighted sums with magnetic skyrmions. Zenodo https://doi.org/10.5281/zenodo.13988409 (2024).

Download references

Acknowledgements

This work is supported by the Horizon 2020 Framework Program of the European Commission under FET-Proactive Grant SKYTOP (no. 824123), by the European Research Council advanced grant GrenaDyn (reference no. 101020684), by the EU project SkyANN (reference no. 101135729) and from a France 2030 government grant managed by the French National Research Agency (grant no. ANR-22-EXSP-0002 PEPR SPIN CHIREX).

Author information

Authors and Affiliations

Authors

Contributions

M.-B.M., P.S., V.C., J.G. and N.R. conceived the project. N.R., D.S.-H., Y.S. and T.d.C.S.C.G. designed the measurement procedure. S.C., Y.S. and T.d.C.S.C.G. grew the multilayer films and Ta electrodes. T.d.C.S.C.G. patterned the samples, acquired the magneto-optic Kerr effect and transport data, treated and analysed the data with support from Y.S., D.S.-H., S.K., M.-B.M., P.S., V.C., J.G. and N.R. T.d.C.S.C.G., V.C., J.G. and N.R. prepared the manuscript. All authors discussed and commented on the manuscript.

Corresponding authors

Correspondence to Tristan da Câmara Santa Clara Gomes, Vincent Cros, Julie Grollier or Nicolas Reyren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Jayasimha Atulasimha and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–11, Figs. 1–13 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Câmara Santa Clara Gomes, T., Sassi, Y., Sanz-Hernández, D. et al. Neuromorphic weighted sums with magnetic skyrmions. Nat Electron 8, 204–214 (2025). https://doi.org/10.1038/s41928-024-01303-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41928-024-01303-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing