Extended Data Table 4 Details of the YOLO neural networks used in the demonstration

From: A dual-domain compute-in-memory system for general neural network inference

Description

YOLO

w/o enhancing

YOLO

w/ enhancing

YOLO

w/ enhancing (group conv.)

Feature extraction layers (ACIM)

11

11

11

Detection head layers (digital)

2

2

2

Feature-enhancing layers (digital)

0

11

11

Number of layers

13

24

24

Layers on ACIM

11

11

11

Number of weight parameters (M)

0.75

0.87

0.76

Number of weight parameters on ACIM (M)

0.74

0.74

0.74

Total GOPs

0.83

0.96

0.84

Enhancing layer GOPs

0

0.13

0.012

Enhancing layer extra overhead (%)

0

13

1.4

Est. 28 nm energy efficiency (TOPs W−1)

14.1

12.4

13.7

Est. 28 nm energy efficiency (TOPs W−1)

(consider enhancing layers as invalid operations)

10.5

12.9

mAP-50 (on-chip measured)

0.27

0.724

mAP-50 (simulated)

0.23

0.744

0.662

mAP-50 Improvement with Enhancing

-

×2.7

×2.5