Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microcomb-synchronized optoelectronics

Abstract

Optoelectronics could be used to develop fast and wideband information systems. However, the large frequency mismatch between optically synthesized signals and electronic clocks makes it difficult to synchronize optoelectronic systems. We describe an on-chip microcomb that can synthesize single-frequency and wideband signals covering a broad frequency band (from megahertz to hundreds of gigahertz) and that can provide reference clocks for the electronics in the system. Our synchronization strategy, which aligns optically synthesized signals and electronics, can provide signal manipulation precision and data transmission without coherent digital signal processing. To illustrate the capabilities of this approach, we create a wireless joint sensing and communication system based on a shared microcomb-based transmitter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Time–frequency synchronization strategies for optoelectronic systems.
Fig. 2: Microcomb-based oscillator and frequency synthesizer.
Fig. 3: Performance comparison of synchronization strategies.
Fig. 4: Microcomb-synchronized multifunctional system.

Similar content being viewed by others

Data availability

The data used to produce the plots within this paper are available via Zenodo at https://doi.org/10.5281/zenodo.14220282 (ref. 63). All other data used in this study are available from the corresponding authors upon request.

Code availability

The codes that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Luo, T.-N., Wu, C.-H. E. & Chen, Y.-J. E. A 77-GHz CMOS FMCW frequency synthesizer with reconfigurable chirps. IEEE Trans. Microw. Theory Tech. 61, 2641–2647 (2013).

    Article  Google Scholar 

  2. Vankka, J. & Halonen, K. A. Direct Digital Synthesizers: Theory, Design and Applications Vol. 614 (Springer, 2001).

  3. Sengupta, K., Nagatsuma, T. & Mittleman, D. M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron. 1, 622–635 (2018).

    Article  Google Scholar 

  4. Torres-Company, V. & Weiner, A. M. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photonics Rev. 8, 368–393 (2014).

    Article  Google Scholar 

  5. Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photonics 13, 80–90 (2019).

    Article  Google Scholar 

  6. Tetsumoto, T. et al. Optically referenced 300 GHz millimetre-wave oscillator. Nat. Photonics 15, 516–522 (2021).

    Article  Google Scholar 

  7. Jørgensen, A. A. et al. Petabit-per-second data transmission using a chip-scale microcomb ring resonator source. Nat. Photonics 16, 798–802 (2022).

    Article  Google Scholar 

  8. Idjadi, M. H. & Aflatouni, F. Integrated Pound–Drever–Hall laser stabilization system in silicon. Nat. Commun. 8, 1209 (2017).

    Article  Google Scholar 

  9. Pasquazi, A. et al. Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1–81 (2018).

    Article  MathSciNet  Google Scholar 

  10. Del’Haye, P., Papp, S. B. & Diddams, S. A. Hybrid electro-optically modulated microcombs. Phys. Rev. Lett. 109, 263901 (2012).

    Article  Google Scholar 

  11. Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics 14, 486–491 (2020).

    Article  Google Scholar 

  12. Telle, H. R. et al. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).

    Article  Google Scholar 

  13. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    Article  Google Scholar 

  14. Del’Haye, P. et al. Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nat. Photonics 10, 516–520 (2016).

    Article  Google Scholar 

  15. Lucas, E. et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nat. Commun. 11, 374 (2020).

    Article  Google Scholar 

  16. Yao, X. S. & Maleki, L. Optoelectronic microwave oscillator. J. Opt. Soc. Am. B 13, 1725–1735 (1996).

    Article  Google Scholar 

  17. Hao, T. et al. Breaking the limitation of mode building time in an optoelectronic oscillator. Nat. Commun. 9, 1839 (2018).

    Article  Google Scholar 

  18. Maleki, L. The optoelectronic oscillator. Nat. Photonics 5, 728–730 (2011).

    Article  Google Scholar 

  19. Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photonics 5, 425–429 (2011).

    Article  Google Scholar 

  20. Li, J., Yi, X., Lee, H., Diddams, S. A. & Vahala, K. J. Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).

    Article  Google Scholar 

  21. Li, J., Lee, H. & Vahala, K. J. Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun. 4, 2097 (2013).

    Article  Google Scholar 

  22. Ghelfi, P. et al. A fully photonics-based coherent radar system. Nature 507, 341–345 (2014).

    Article  Google Scholar 

  23. Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2019).

    Article  Google Scholar 

  24. Kittlaus, E. A. et al. A low-noise photonic heterodyne synthesizer and its application to millimeter-wave radar. Nat. Commun. 12, 4397 (2021).

    Article  Google Scholar 

  25. Kudelin, I. et al. Photonic chip-based low-noise microwave oscillator. Nature 627, 534–539 (2024).

    Article  Google Scholar 

  26. Brodnik, G. M. et al. Optically synchronized fibre links using spectrally pure chip-scale lasers. Nat. Photonics 15, 588–593 (2021).

    Article  Google Scholar 

  27. Hyun, M., Chung, H., Na, W. & Kim, J. Femtosecond-precision electronic clock distribution in CMOS chips by injecting frequency comb-extracted photocurrent pulses. Nat. Commun. 14, 2345 (2023).

    Article  Google Scholar 

  28. Zhou, Z. et al. Communications with guaranteed bandwidth and low latency using frequency-referenced multiplexing. Nat. Electron. 6, 694–702 (2023).

    Article  Google Scholar 

  29. Zhao, Y. et al. All-optical frequency division on-chip using a single laser. Nature 627, 546–552 (2024).

    Article  Google Scholar 

  30. Sun, S. et al. Integrated optical frequency division for microwave and mmWave generation. Nature 627, 540–545 (2024).

    Article  Google Scholar 

  31. Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

    Article  Google Scholar 

  32. Bao, H. et al. Laser cavity-soliton microcombs. Nat. Photonics 13, 384–389 (2019).

    Article  Google Scholar 

  33. Cutrona, A. et al. Stability of laser cavity-solitons for metrological applications. Appl. Phys. Lett. 122, 121104 (2023).

    Article  Google Scholar 

  34. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    Article  Google Scholar 

  35. Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics 15, 346–353 (2021).

    Article  Google Scholar 

  36. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  Google Scholar 

  37. Del’Haye, P., Beha, K., Papp, S. B. & Diddams, S. A. Self-injection locking and phase-locked states in microresonator-based optical frequency combs. Phys. Rev. Lett. 112, 043905 (2014).

    Article  Google Scholar 

  38. Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    Article  Google Scholar 

  39. Chang, L., Liu, S. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photonics 16, 95–108 (2022).

    Article  Google Scholar 

  40. Li, J. et al. Ultrahigh-factor frequency multiplication based on optical sideband injection locking for broadband linear frequency modulated microwave generation. Opt. Express 29, 40748–40758 (2021).

    Article  Google Scholar 

  41. Liu, C. et al. Investigation of signal-to-noise ratio performance of microwave photonic links enhanced by optical injection locking and channelized spectrum stitching. Opt. Express 30, 19731–19744 (2022).

    Article  Google Scholar 

  42. Tsai, C.-T. et al. Long-reach 60-GHz MMWoF link with free-running laser diodes beating. Sci. Rep. 8, 13711 (2018).

    Article  Google Scholar 

  43. Yu, J. et al. Broadband photon-assisted terahertz communication and sensing. J. Lightwave Technol. 41, 3332–3349 (2023).

    Article  Google Scholar 

  44. Zheng, X., Xue, Z., Li, S., Xue, X. & Zhou, B. Photonics-assisted joint radar and communication system based on optoelectronic oscillator. Opt. Express 29, 22442–22454 (2021).

  45. Xue, Z. et al. OFDM radar and communication joint system using opto-electronic oscillator with phase noise degradation analysis and mitigation. J. Lightwave Technol. 40, 4101–4109 (2022).

    Article  Google Scholar 

  46. Younis, M., Metzig, R. & Krieger, G. Performance prediction of a phase synchronization link for bistatic SAR. IEEE Geosci. Remote Sens. Lett. 3, 429–433 (2006).

    Article  Google Scholar 

  47. Minn, H., Bhargava, V. & Letaief, K. A robust timing and frequency synchronization for OFDM systems. IEEE Trans. Wirel. Commun. 24, 822–839 (2003).

    Article  Google Scholar 

  48. Nasir, A. A., Durrani, S., Mehrpouyan, H., Blostein, S. D. & Kennedy, R. A. Timing and carrier synchronization in wireless communication systems: a survey and classification of research in the last 5 years. EURASIP J. Wirel. Commun. Netw. 2016, 180 (2016).

    Article  Google Scholar 

  49. Shu, H. et al. Microcomb-driven silicon photonic systems. Nature 605, 457–463 (2022).

    Article  Google Scholar 

  50. Zhang, Z., Liu, Y., Stephens, T. & Eggleton, B. J. Photonic radar for contactless vital sign detection. Nat. Photonics 17, 791–797 (2023).

    Article  Google Scholar 

  51. Behravan, A. et al. Positioning and sensing in 6G: gaps, challenges, and opportunities. IEEE Veh. Technol. Mag. 18, 40–48 (2023).

    Article  Google Scholar 

  52. Sanjari, P. & Aflatouni, F. An integrated photonic-assisted phased array transmitter for direct fiber to mm-wave links. Nat. Commun. 14, 1414 (2023).

    Article  Google Scholar 

  53. Skolnik, M. I. (ed.) Radar Handbook, 3rd edn (McGraw-Hill, 2008).

  54. Koivumäki, P. Triangular and Ramp Waveforms in Target Detection with a Frequency Modulated Continuous Wave Radar. Master’s thesis, Aalto Univ. (2017).

  55. Huang, G. et al. Thermorefractive noise in silicon-nitride microresonators. Phys. Rev. A 99, 061801 (2019).

    Article  Google Scholar 

  56. Lao, C. et al. Quantum decoherence of dark pulses in optical microresonators. Nat. Commun. 14, 1802 (2023).

    Article  Google Scholar 

  57. Savchenkov, A. et al. Stabilization of a Kerr frequency comb oscillator. Opt. Lett. 38, 2636–2639 (2013).

    Article  Google Scholar 

  58. Martinez, G. D. et al. A chip-scale atomic beam clock. Nat. Commun. 14, 3501 (2023).

    Article  Google Scholar 

  59. Reed, G. T., Mashanovich, G. Z., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photonics 4, 518–526 (2010).

    Article  Google Scholar 

  60. Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).

    Article  Google Scholar 

  61. Zhang, X. et al. High-coherence parallelization in integrated photonics. Nat. Commun. 15, 7892 (2024).

    Article  Google Scholar 

  62. Li, K. et al. An integrated CMOS–silicon photonics transmitter with a 112 gigabaud transmission and picojoule per bit energy efficiency. Nat. Electron. 6, 910–921 (2023).

  63. Zhang, X. et al. Microcomb-synchronized optoelectronics. Zenodo https://zenodo.org/records/14220282 (2024).

Download references

Acknowledgements

We thank J. Yang, Q. Sun, Z. Mo, W. Jiang, Z. Yin and Q. Xie for fruitful discussions and helpful comments on the paper and H. Shu and Z. Tao for supplying the large-bandwidth PD. This work is supported by High-Performance Computing Platform of Peking University.

Author information

Authors and Affiliations

Authors

Contributions

The concept of this work was conceived by Xiangpeng Z., L.C. and W.L. The experiments were performed by Xiangpeng Z., Xuguang Z. and Y.C. with the assistance of Z.Z., C. Liu, C. Lao, J.D., W.M., J.H., W.J., W.H. and X.W. The results were analysed by Xiangpeng Z., Xuguang Z., Y.C., L.C. and Z.Z. All authors participated in writing the paper. The project was supervised by L.C., Xiangpeng Z., W.L. and J.E.B.

Corresponding authors

Correspondence to John E. Bowers, Wangzhe Li or Lin Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Xu Yi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections, Figs. 1–14 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, X., Chen, Y. et al. Microcomb-synchronized optoelectronics. Nat Electron 8, 322–330 (2025). https://doi.org/10.1038/s41928-025-01349-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41928-025-01349-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing