Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dielectric-assisted transfer using single-crystal antimony oxide for two-dimensional material devices

Abstract

Two-dimensional (2D) materials could be used to build next-generation electronics. However, despite progress in the synthesis of single-crystal 2D wafers for use as the channel material in devices, the preparation of single-crystal dielectric wafers—and their reliable integrating on 2D semiconductors with clean interfaces, large gate capacitance and low leakage current—remains challenging. Here we show that thin (around 2 nm) single-crystal wafers of the dielectric antimony oxide (Sb2O3) can be epitaxially grown on a graphene-covered copper surface. The films exhibit good gate controllability at an equivalent oxide thickness of 0.6 nm. The conformal growth of Sb2O3 allows graphene to be transferred onto application-specific substrates with a low density of cracks and wrinkles. With the approach, and due to the clean dielectric interface, graphene devices can be fabricated on a four-inch wafer that exhibit a maximum carrier mobility of 29,000 cm2 V−1 s−1 (average of 14,000 cm2 V−1 s−1) and good long-term stability. The Sb2O3 can also be transferred and used as a dielectric in molybdenum disulfide (MoS2) devices, leading to devices with an on/off ratio of 108 and minimum subthreshold swing of 64 mV dec−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epitaxial growth of single-crystal Sb2O3 on the graphene-covered Cu(111) surface.
Fig. 2: Wafer-scale transfer of 2D materials assisted by Sb2O3 film.
Fig. 3: Electronic properties of the graphene transferred and covered by Sb2O3 films.
Fig. 4: Graphene and MoS2 devices with s-Sb2O3 as top-gate dielectric.
Fig. 5: Patterned transfer of 2D materials and the fabrication of vdW heterostructure.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

Code availability

The codes used for plotting the data are available from the corresponding authors upon reasonable request.

References

  1. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article  Google Scholar 

  2. Romagnoli, M. et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414 (2018).

    Article  Google Scholar 

  3. Meng, W. Q. et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 16, 1231–1236 (2021).

    Article  Google Scholar 

  4. Wang, S. Y. et al. Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21, 1225–1239 (2022).

    Article  Google Scholar 

  5. Wang, M. et al. Single-crystal, large-area, fold-free monolayer graphene. Nature 596, 519–524 (2021).

    Article  Google Scholar 

  6. Yang, P. F. et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 14, 5036–5045 (2020).

    Article  Google Scholar 

  7. Deng, B. et al. Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates. ACS Nano 11, 12337–12345 (2017).

    Article  Google Scholar 

  8. Fukamachi, S. et al. Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays. Nat. Electron. 6, 126–136 (2023).

    Article  Google Scholar 

  9. Leong, W. S. et al. Paraffin-enabled graphene transfer. Nat. Commun. 10, 867 (2019).

    Article  Google Scholar 

  10. Kim, J. et al. Layer-resolved graphene transfer via engineered strain layers. Science 342, 833–836 (2013).

    Article  Google Scholar 

  11. Kim, S. J. et al. Ultraclean patterned transfer of single-layer graphene by recyclable pressure sensitive adhesive films. Nano Lett. 15, 3236–3240 (2015).

    Article  Google Scholar 

  12. Hwang, E. H. & Das Sarma, S. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phys. Rev. B 77, 115449 (2008).

    Article  Google Scholar 

  13. Petrone, N. Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano Lett. 12, 2751–2756 (2012).

    Article  Google Scholar 

  14. Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).

    Article  Google Scholar 

  15. Kim, H. et al. High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer process. Nat. Nanotechnol. 18, 464–470 (2023).

    Article  Google Scholar 

  16. Zhang, Z. K. et al. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat. Commun. 8, 14560 (2017).

    Article  Google Scholar 

  17. Luo, D. et al. Role of graphene in water-assisted oxidation of copper in relation to dry transfer of graphene. Chem. Mater. 29, 4546–4556 (2017).

    Article  Google Scholar 

  18. Yang, F. et al. Effect of environmental contaminants on the interfacial properties of two-dimensional materials. Acc. Mater. Res. 3, 1022–1032 (2022).

    Article  Google Scholar 

  19. Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).

    Article  Google Scholar 

  20. Yan, R. H., Ourmazd, A. & Lee, K. F. Scaling the Si MOSFET—from bulk to SOI to bulk. IEEE Trans. Electron Devices 39, 1704–1710 (1992).

    Article  Google Scholar 

  21. Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article  Google Scholar 

  22. Li, W. S. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).

    Article  Google Scholar 

  23. Pirkle, A., Wallace, R. M. & Colombo, L. In situ studies of Al2O3 and HfO2 dielectrics on graphite. Appl. Phys. Lett. 95, 133106 (2009).

    Article  Google Scholar 

  24. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  Google Scholar 

  25. Yang, A. J. et al. Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors. Nat. Electron. 5, 233–240 (2022).

    Article  Google Scholar 

  26. Zhang, Y. C. et al. A single-crystalline native dielectric for two-dimensional semiconductors with an equivalent oxide thickness below 0.5 nm. Nat. Electron. 5, 643–649 (2022).

    Article  Google Scholar 

  27. Chen, T. A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu(111). Nature 579, 219–223 (2020).

    Article  Google Scholar 

  28. Li, J. Z. et al. Wafer-scale single-crystal monolayer graphene grown on sapphire substrate. Nat. Mater. 21, 740–747 (2022).

    Article  Google Scholar 

  29. Zhao, Y. X. et al. Large-area transfer of two-dimensional materials free of cracks, contamination and wrinkles via controllable conformal contact. Nat. Commun. 13, 4409 (2022).

    Article  Google Scholar 

  30. Gao, X. et al. Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation. Nat. Commun. 13, 5410 (2022).

    Article  Google Scholar 

  31. Zhao, H. W. et al. PMMA direct exfoliation for rapid and organic free transfer of centimeter-scale CVD graphene. 2D Mater. 9, 015036 (2022).

    Article  Google Scholar 

  32. Zhou, H. L. et al. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 4, 2096 (2013).

    Article  Google Scholar 

  33. Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  Google Scholar 

  34. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    Article  Google Scholar 

  35. Lin, L. et al. Towards super-clean graphene. Nat. Commun. 10, 1912 (2019).

    Article  Google Scholar 

  36. Martini, L. et al. Scalable high-mobility graphene/hBN heterostructures. ACS Appl. Mater. Interfaces 15, 37794–37801 (2023).

    Article  Google Scholar 

  37. Li, X. S. et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816–2819 (2011).

    Article  Google Scholar 

  38. Yan, Z. et al. Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 7, 2872–2872 (2013).

    Article  Google Scholar 

  39. Zhang, C. C. et al. Single-crystalline van der Waals layered dielectric with high dielectric constant. Nat. Mater. 22, 832–837 (2023).

    Article  Google Scholar 

  40. Liu, K. L. et al. A wafer-scale van der Waals dielectric made from an inorganic molecular crystal film. Nat. Electron. 4, 906–913 (2021).

    Article  Google Scholar 

  41. Xu, Y. S. et al. Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors. Nat. Mater. 22, 1078–1084 (2023).

    Article  Google Scholar 

  42. Zhu, Y. S. et al. Controlled growth of single-crystal graphene wafers on twin-boundary-free Cu(111) substrates. Adv. Mater. 36, 2308802 (2024).

    Article  Google Scholar 

  43. Zeng, D. B. et al. Single-crystalline metal-oxide dielectrics for top-gate 2D transistors. Nature 632, 788–794 (2024).

    Article  Google Scholar 

  44. Huang, J. K. et al. High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022).

    Article  Google Scholar 

  45. Chen, X. L. et al. Probing the electron states and metal-insulator transition mechanisms in molybdenum disulphide vertical heterostructures. Nat. Commun. 6, 6088 (2015).

    Article  Google Scholar 

  46. Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D Mater. Appl. 2, 6 (2018).

    Article  Google Scholar 

  47. Wu, D. et al. Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes. Nano Lett. 15, 8136–8140 (2015).

    Article  Google Scholar 

  48. Stengel, M. & Spaldin, N. A. Origin of the dielectric dead layer in nanoscale capacitors. Nature 443, 679–682 (2006).

    Article  Google Scholar 

  49. International Roadmap for Devices and Systems (IEEE, 2023).

  50. Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012).

    Article  Google Scholar 

  51. Ando, T. et al. CMOS compatible MIM decoupling capacitor with reliable sub-nm EOT high-k stacks for the 7 nm node and beyond. Tech. Dig. Int. Electron Devices Meet. 16, 236–239 (2016).

    Google Scholar 

  52. Tsai, W. et al. Performance comparison of sub-1-nm sputtered TiN/HfO2 nMOS and pMOSFETs. Tech. Dig. Int. Electron Devices Meet. 3, 311–314 (2003).

  53. Mondal, A. et al. Low Ohmic contact resistance and high on/off ratio in transition metal dichalcogenides field-effect transistors via residue-free transfer. Nat. Nanotechnol. 19, 34–43 (2024).

    Article  Google Scholar 

  54. Watson, A. J., Lu, W. B., Guimaraes, M. H. D. & Stöhr, M. Transfer of large-scale two-dimensional semiconductors: challenges and developments. 2D Mater. 8, 032001 (2021).

    Article  Google Scholar 

  55. Caldwell, J. D. et al. Technique for the dry transfer of epitaxial graphene onto arbitrary substrates. ACS Nano 4, 1108–1114 (2010).

    Article  Google Scholar 

  56. Liu, L. X. et al. Scalable van der Waals encapsulation by inorganic molecular crystals. Adv. Mater. 34, 2106041 (2022).

    Article  Google Scholar 

  57. Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013).

    Article  Google Scholar 

  58. Hu, Z. N. et al. Rapid and scalable transfer of large-area graphene wafers. Adv. Mater. 35, 2300621 (2023).

    Article  Google Scholar 

  59. Hong, J. Y. et al. A rational strategy for graphene transfer on substrates with rough features. Adv. Mater. 28, 2382–2392 (2016).

    Article  Google Scholar 

  60. Seo, Y. M. et al. Defect-free mechanical graphene transfer using n-doping adhesive gel buffer. ACS Nano 15, 11276–11284 (2021).

    Article  Google Scholar 

  61. Zhang, X. W. et al. A scalable polymer-free method for transferring graphene onto arbitrary surfaces. Carbon 161, 479–485 (2020).

    Article  Google Scholar 

  62. Lee, J. H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    Article  Google Scholar 

  63. Banszerus, L. et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015).

    Article  Google Scholar 

  64. Liu, G. Y. et al. Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials. Nat. Electron. 5, 275–280 (2022).

    Article  Google Scholar 

  65. Chen, C. Y. et al. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 4, 861–867 (2009).

    Article  Google Scholar 

  66. Castellanos-Gomez, A. et al. Van der Waals heterostructures. Nat. Rev. Methods Primers 2, 58 (2022).

    Article  Google Scholar 

  67. Liu, Y., Huang, Y. & Duan, X. F. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article  Google Scholar 

  68. Zhou, K. G. et al. Raman modes of MoS2 used as fingerprint of van der Waals interactions in 2D crystal-based heterostructures. ACS Nano 8, 9914–9924 (2014).

  69. Han, W. et al. Two-dimensional inorganic molecular crystals. Nat. Commun. 10, 4728 (2019).

    Article  Google Scholar 

  70. Kresse, G. & Furthmuller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  71. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  72. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  73. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  74. Niu, T. C. et al. Large-scale synthesis of strain-tunable semiconducting antimonene on copper oxide. Adv. Mater. 32, 1906873 (2020).

    Article  Google Scholar 

  75. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  MathSciNet  Google Scholar 

  76. Berland, K. & Hyldgaard, P. Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional. Phys. Rev. B 89, 035412 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant nos. T2188101 and 52372038), the National Key Research and Development Program of China (grant nos. 2024YFE0202200, 2022YFA1204900, 2023YFB3609900 and 2024YFE0109200) and the Science and Technology Development Fund, Macau SAR (grant no. 0107/2024/AMJ). We acknowledge the Molecular Materials and Nanofabrication Laboratory (MMNL) in the College of Chemistry, Materials Processing and Analysis Center and Peking nanofab at Peking University for the use of instruments.

Author information

Authors and Affiliations

Authors

Contributions

L.L. and Z.L. conceived the experiment. L.L. and Z.L. supervised the project. J.L., Y. Zhao, Z.H., Q.Z., Q.L., M.S., H.W. and F.L. conducted the transfer of 4-inch-sized Sb2O3/graphene onto target substrates. J.L. and X.C., characterized the interface between Cu(111) and Sb2O3. J.L., X.C., Y. Zhu, Z.H., Q.Z. and H.W. took and analysed the OM and AFM data. Q.L., M.S., Q.X. and F.L. conducted the Raman measurements of transferred graphene and MoS2. J.Y., J.L., W.W. and Y. Zhao performed device fabrication and electrical measurements of graphene and MoS2. S.B. conducted the calculation of adhesion energy. Y. Zhu, Z.S., Z.H. and X.Z. conducted the TEM characterization and analysis. K.J. conducted the CVD growth of graphene. J.H. and Y. Zhang conducted the growth of MoS2. L.L., Z.L. X.Q. and H.P. discussed the transfer results. All authors discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Yanfeng Zhang, Li Lin or Zhongfan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Hiroki Ago, Mengjian Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–32 and Tables 1–3.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, J., Zhao, Y., Chen, X. et al. Dielectric-assisted transfer using single-crystal antimony oxide for two-dimensional material devices. Nat Electron 8, 309–321 (2025). https://doi.org/10.1038/s41928-025-01353-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41928-025-01353-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing