Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient superconducting diodes and rectifiers for quantum circuitry

Abstract

Superconducting electronics is of use in the development of energy-efficient classical and quantum computing applications. Non-reciprocal superconducting circuit elements, such as superconducting diodes, are needed for such systems, but integrating several superconducting diodes in a superconducting circuit remains a challenge. Here we report a superconducting diode bridge that consists of multiple superconducting diodes with reproducible characteristics and operating temperatures of a few Kelvin. The superconducting diodes are fabricated from thin-film bilayers of the elemental superconductor vanadium and the insulating ferromagnet europium sulfide. Four practically identical diodes are patterned on the same superconducting film to create the superconducting diode bridge. The bridge can function as a full-wave rectifier with an efficiency up to 42 ± 5%, and offers alternating current (a.c.) to direct current (d.c.) signal conversion capabilities at frequencies up to 40 kHz.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Efficient and reproducible SD effect in V/EuS devices.
Fig. 2: Reversible operation and efficiency of a superconducting rectifier.
Fig. 3: Converting a.c. currents into d.c. signals using a superconducting rectifier.

Similar content being viewed by others

Data availability

The data and code associated with the analysis are available at https://doi.org/10.7910/DVN/BSAD8L (ref. 54).

References

  1. Radebaugh, R. Cryocoolers: the state of the art and recent developments. J. Phys. Condens. Matt. 21, 164219 (2009).

    Article  Google Scholar 

  2. Çam, E., Hungerford, Z., Schoch, N., Miranda, F. P. & de León, C. D. Y. Electricity 2024 Analysis and Forecast to 2026 (International Energy Agency, 2024).

  3. Braginski, A. I. Superconductor electronics: status and outlook. J. Supercond. Nov. Magn. 32, 23–44 (2019).

    Article  Google Scholar 

  4. Dixit, A. V. et al. Searching for dark matter with a superconducting qubit. Phys. Rev. Lett. 126, 141302 (2021).

    Article  Google Scholar 

  5. Kirichenko, D., Sarwana, S. & Kirichenko, A. Zero static power dissipation biasing of RSFQ circuits. IEEE Trans. Appl. Supercond. 21, 776–779 (2011).

    Article  Google Scholar 

  6. Mukhanov, O. A. Energy-efficient single flux quantum technology. IEEE Trans. Appl. Supercond. 21, 760–769 (2011).

    Article  Google Scholar 

  7. Mukhanov, O. et al. Scalable quantum computing infrastructure based on superconducting electronics. In Proc. 65th IEEE International Electron Devices Meeting (IEDM) 31.2.1–31.2.4 (IEEE, 2019).

  8. McDermott, R. et al. Quantum–classical interface based on single flux quantum digital logic. Quantum Sci. Technol. 3, 024004 (2018).

    Article  Google Scholar 

  9. Cai, R., Žutić, I. & Han, W. Superconductor/ferromagnet heterostructures: a platform for superconducting spintronics and quantum computation. Adv. Quantum Technol. 6, 2200080 (2023).

    Article  Google Scholar 

  10. Nadeem, M., Fuhrer, M. S. & Wang, X. The superconducting diode effect. Nat. Rev. Phys. 5, 558–577 (2023).

    Article  Google Scholar 

  11. Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).

    Article  Google Scholar 

  12. Ando, F. et al. Observation of superconducting diode effect. Nature 584, 373–376 (2020).

    Article  Google Scholar 

  13. Chahid, S., Teknowijoyo, S., Mowgood, I. & Gulian, A. High-frequency diode effect in superconducting Nb3Sn microbridges. Phys. Rev. B 107, 054506 (2023).

    Article  Google Scholar 

  14. Villegas, J. et al. A superconducting reversible rectifier that controls the motion of magnetic flux quanta. Science 302, 1188 (2003).

    Article  Google Scholar 

  15. Suri, D. et al. Non-reciprocity of vortex-limited critical current in conventional superconducting micro-bridges. Appl. Phys. Lett. 121, 102601 (2022).

    Article  Google Scholar 

  16. Gutfreund, A. et al. Direct observation of a superconducting vortex diode. Nat. Commun. 14, 1630 (2023).

    Article  Google Scholar 

  17. Hou, Y. et al. Ubiquitous superconducting diode effect in superconductor thin films. Phys. Rev. Lett. 131, 027001 (2023).

    Article  Google Scholar 

  18. Narita, H. et al. Field-free superconducting diode effect in noncentrosymmetric superconductor/ferromagnet multilayers. Nat. Nanotechnol. 17, 823–828 (2022).

    Article  Google Scholar 

  19. Jiang, J. et al. Field-free superconducting diode in a magnetically nanostructured superconductor. Phys. Rev. Appl. 18, 034064 (2022).

    Article  Google Scholar 

  20. Trahms, M. et al. Diode effect in Josephson junctions with a single magnetic atom. Nature 615, 628–633 (2023).

    Article  Google Scholar 

  21. Wakatsuki, R. et al. Nonreciprocal charge transport in noncentrosymmetric superconductors. Sci. Adv. 3, e1602390 (2017).

    Article  Google Scholar 

  22. Golod, T. & Krasnov, V. M. Demonstration of a superconducting diode-with-memory, operational at zero magnetic field with switchable nonreciprocity. Nat. Commun. 13, 3658 (2022).

    Article  Google Scholar 

  23. Lin, J.-X. et al. Zero-field superconducting diode effect in small-twist-angle trilayer graphene. Nat. Phys. 18, 1221–1227 (2022).

    Article  Google Scholar 

  24. Cerbu, D. et al. Vortex ratchet induced by controlled edge roughness. N. J. Phys. 15, 063022 (2013).

    Article  MathSciNet  Google Scholar 

  25. Vodolazov, D., Peeters, F., Grigorieva, I. & Geim, A. Nonlocal response and surface-barrier-induced rectification in hall-shaped mesoscopic superconductors. Phys. Rev. B 72, 024537 (2005).

    Article  Google Scholar 

  26. Vodolazov, D. Y. & Peeters, F. Superconducting rectifier based on the asymmetric surface barrier effect. Phys. Rev. B 72, 172508 (2005).

    Article  Google Scholar 

  27. Moll, P. J. & Geshkenbein, V. B. Evolution of superconducting diodes. Nat. Phys. 19, 1379–1380 (2023).

    Article  Google Scholar 

  28. Swartz, P. & Hart, H. Jr Asymmetries of the critical surface current in type-II superconductors. Phys. Rev. 156, 412 (1967).

    Article  Google Scholar 

  29. Edwards, H. & Newhouse, V. Superconducting film geometry with strong critical current asymmetry. J. Appl. Phys. 33, 868–874 (1962).

    Article  Google Scholar 

  30. Yasuda, K. et al. Nonreciprocal charge transport at topological insulator/superconductor interface. Nat. Commun. 10, 2734 (2019).

    Article  Google Scholar 

  31. Itahashi, Y. M. et al. Nonreciprocal transport in gate-induced polar superconductor SrTiO3. Sci. Adv. 6, eaay9120 (2020).

    Article  Google Scholar 

  32. Wu, H. et al. The field-free Josephson diode in a van der Waals heterostructure. Nature 604, 653–656 (2022).

    Article  Google Scholar 

  33. Jeon, K.-R. et al. Zero-field polarity-reversible Josephson supercurrent diodes enabled by a proximity-magnetized PT barrier. Nat. Mater. 21, 1008–1013 (2022).

    Article  Google Scholar 

  34. Baumgartner, C. et al. Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions. Nat. Nanotechnol. 17, 39–44 (2022).

    Article  Google Scholar 

  35. Ilić, S. & Bergeret, F. S. Theory of the supercurrent diode effect in Rashba superconductors with arbitrary disorder. Phys. Rev. Lett. 128, 177001 (2022).

    Article  Google Scholar 

  36. Kokkeler, T., Golubov, A. & Bergeret, F. Field-free anomalous junction and superconducting diode effect in spin-split superconductor/topological insulator junctions. Phys. Rev. B 106, 214504 (2022).

    Article  Google Scholar 

  37. Yuan, N. F. & Fu, L. Supercurrent diode effect and finite-momentum superconductors. Proc. Natl Acad. Sci. USA 119, e2119548119 (2022).

    Article  MathSciNet  Google Scholar 

  38. Davydova, M., Prembabu, S. & Fu, L. Universal Josephson diode effect. Sci. Adv. 8, eabo0309 (2022).

    Article  Google Scholar 

  39. Pal, B. et al. Josephson diode effect from cooper pair momentum in a topological semimetal. Nat. Phys. 18, 1228–1233 (2022).

    Article  Google Scholar 

  40. Hope, M. K., Amundsen, M., Suri, D., Moodera, J. S. & Kamra, A. Interfacial control of vortex-limited critical current in type-ii superconductor films. Phys. Rev. B 104, 184512 (2021).

    Article  Google Scholar 

  41. Zhao, S. F. et al. Time-reversal symmetry breaking superconductivity between twisted cuprate superconductors. Science 382, 1422–1427 (2023).

    Article  Google Scholar 

  42. Ghosh, S. et al. High-temperature Josephson diode. Nat. Mater. 23, 612–618 (2024).

    Article  Google Scholar 

  43. Bozkurt, A. M., Brookman, J., Fatemi, V. & Akhmerov, A. R. Double-Fourier engineering of Josephson energy-phase relationships applied to diodes. SciPost Phys. 15, 204 (2023).

    Article  Google Scholar 

  44. Cayao, J., Nagaosa, N. & Tanaka, Y. Enhancing the Josephson diode effect with Majorana bound states. Phys. Rev. B 109, L081405 (2024).

    Article  Google Scholar 

  45. Yerin, Y., Drechsler, S.-L., Varlamov, A., Cuoco, M. & Giazotto, F. Supercurrent rectification with time-reversal symmetry broken multiband superconductors. Phys. Rev. B 110, 054501 (2024).

    Article  Google Scholar 

  46. Pal, S. & Benjamin, C. Quantized Josephson phase battery. Europhys. Lett. 126, 57002 (2019).

    Article  Google Scholar 

  47. Margineda, D. et al. Sign reversal diode effect in superconducting Dayem nanobridges. Commun. Phys. 6, 343 (2023).

    Article  Google Scholar 

  48. Margineda, D. et al. Back-action supercurrent diodes. Commun. Phys. 8, 16 (2025).

    Article  Google Scholar 

  49. Costa, A., Fabian, J. & Kochan, D. Microscopic study of the Josephson supercurrent diode effect in Josephson junctions based on two-dimensional electron gas. Phys. Rev. B 108, 054522 (2023).

    Article  Google Scholar 

  50. Scharf, B., Kochan, D. & Matos-Abiague, A. Superconducting diode effect in quantum spin Hall insulator based Josephson junctions. Phys. Rev. B 110, 134511 (2024).

    Article  Google Scholar 

  51. Horowitz, P., Hill, W. & Robinson, I. The Art of Electronics Vol. 2 (Cambridge Univ. Press, 1989).

  52. Chapman, B. J. et al. Widely tunable on-chip microwave circulator for superconducting quantum circuits. Phys. Rev. X 7, 041043 (2017).

    Google Scholar 

  53. Castellani, M. et al. A superconducting full-wave bridge rectifier. Nat. Electron https://doi.org/10.1038/s41928-025-01376-4 (2025).

    Article  Google Scholar 

  54. Ingla-Aynés, J. et al. Data underlying the publication highly efficient superconducting diodes and rectifiers for quantum circuitry. Harvard Dataverse https://doi.org/10.7910/DVN/BSAD8L (2025).

Download references

Acknowledgements

We acknowledge M. B. Ketchen, A. Kirichenko and A. Gupta for insightful discussions and M. Mondol for technical assistance. This work was supported by Air Force Office of Sponsored Research (grant no. FA9550-23-1-0004 DEF), Office of Naval Research (grant no. N00014-20-1-2306), National Science Foundation (grant nos. NSF-DMR 2218550 and 1231319) and Army Research Office (grant nos. W911NF-20-2-0061, DURIP W911NF-20-1-0074). E.-D.C. and P.W. acknowledge the NSF grant no. CAREER DMR-2046648. This work was carried out in part through the use of MIT.nano’s facilities.

Author information

Authors and Affiliations

Authors

Contributions

J.I.-A., Y.H. and J.S.M. conceived and designed the study with input from O.A.M. Y.H. grew the V/EuS films. E.-D.C. and P.W. grew the Nb/Au films. J.I.-A. fabricated the devices and performed the measurements. Y.H. and S.W. assisted with the measurements. All authors contributed to the paper.

Corresponding authors

Correspondence to Josep Ingla-Aynés or Jagadeesh S. Moodera.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Denis Kochan, Muhammad Nadeem and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–5 and Figs. 1–11.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ingla-Aynés, J., Hou, Y., Wang, S. et al. Efficient superconducting diodes and rectifiers for quantum circuitry. Nat Electron 8, 411–416 (2025). https://doi.org/10.1038/s41928-025-01375-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41928-025-01375-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing