Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Terahertz sensing based on the nonlinear electrodynamics of the two-dimensional correlated topological semimetal TaIrTe4

Abstract

The development of terahertz-sensing technologies has been limited by the lack of sensitive, broadband and fast terahertz detectors. Thermal bolometers are bulky and slow, whereas electronic terahertz detectors (such as Schottky diodes) are fast, but their sensitivity degrades quickly outside a narrow frequency window. Here, we show that a two-dimensional correlated topological semimetal, tantalum iridium telluride (TaIrTe4), has a large room-temperature nonlinear Hall effect and that the interaction between this effect and terahertz nonlinear electrodynamics can be used as a mechanism for terahertz sensing. Our photodetectors exhibit a high sensitivity (noise-equivalent power of around 1 pW Hz−1/2) and a large zero-bias responsivity (around 0.3 A W−1) over a broadband spectral range (0.1–10 THz) at room temperature with an intrinsic ultrafast response time (picoseconds). The zero-bias responsivity and noise-equivalent power performance can be further improved (to 18 A W−1 and 0.05 pW Hz−1/2, respectively) by introducing gate-tunable electron correlations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Large NHE in few-layer TaIrTe4 at room temperature.
Fig. 2: Room-temperature terahertz rectification in few-layer TaIrTe4 topological semimetals.
Fig. 3: Enhanced terahertz electrodynamics due to correlated charge ordering in few-layer TaIrTe4.
Fig. 4: Electrostatic gate control of electron correlation and terahertz rectification.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available via Dryad (an open-access data repository) at https://doi.org/10.5061/dryad.d7wm37qcg. Source data are provided with this paper.

Code availability

The codes used for the calculations are available from the corresponding authors on reasonable request.

References

  1. Sengupta, K., Nagatsuma, T. & Mittleman, D. M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron. https://doi.org/10.1038/s41928-018-0173-2 (2018).

  2. Damari, R. et al. Strong coupling of collective intermolecular vibrations in organic materials at terahertz frequencies. Nat. Commun. 10, 3248 (2019).

    Article  Google Scholar 

  3. Gomonay, O., Baltz, V., Brataas, A. & Tserkovnyak, Y. Antiferromagnetic spin textures and dynamics. Nat. Phys. https://doi.org/10.1038/s41567-018-0049-4 (2018).

  4. Dang, S., Amin, O., Shihada, B. & Alouini, M. S. What should 6G be? Nat. Electron. 3, 20–29 (2020).

    Article  Google Scholar 

  5. Lewis, R. A. A review of terahertz detectors. J. Phys. D: Appl. Phys. https://doi.org/10.1088/1361-6463/ab31d5 (2019).

  6. Valušis, G., Lisauskas, A., Yuan, H., Knap, W. & Roskos, H. G. Roadmap of terahertz imaging 2021. Sensors https://doi.org/10.3390/s21124092 (2021).

  7. Yachmenev, A. E., Khabibullin, R. A. & Ponomarev, D. S. Recent advances in THz detectors based on semiconductor structures with quantum confinement: a review. J. Phys. D: Appl. Phys. 55, 193001 (2022).

    Article  Google Scholar 

  8. Rogalski, A. Progress in performance development of room temperature direct terahertz detectors. J. Infrared Millim. Terahertz Waves https://doi.org/10.1007/s10762-022-00882-2 (2022).

  9. Hesler, J. L. & Crowe, T. W. NEP and responsivity of THz zero-bias Schottky diode detectors. In Proc. IRMMW-THz2007 – Conference Digest of the Joint 32nd International Conference on Infrared and Millimetre Waves and 15th International Conference on Terahertz Electronics 844–845 (IEEE, 2007).

  10. Yadav, R. et al. State-of-the-art room temperature operable zero-bias Schottky diode-based terahertz detector up to 5.56 THz. Sensors 23, 3469 (2023).

    Article  Google Scholar 

  11. Shen, Y. et al. Nonlinear photocurrent in quantum materials for broadband photodetection. Prog. Quantum Electron. 97, 100535 (2024).

  12. Wang, Q. et al. Robust edge photocurrent response on layered type II Weyl semimetal WTe2. Nat. Commun. 10, 5736 (2019).

    Article  Google Scholar 

  13. Ma, J. et al. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. 18, 5736 (2019).

    Article  Google Scholar 

  14. Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. https://doi.org/10.1038/s41563-019-0294-7 (2019).

  15. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    Article  Google Scholar 

  16. Xiao, J. et al. Berry curvature memory through electrically driven stacking transitions. Nat. Phys. 16, 1028–1034 (2020).

    Article  Google Scholar 

  17. Kumar, D. et al. Room-temperature nonlinear Hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 16, 421–425 (2021).

    Article  Google Scholar 

  18. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  Google Scholar 

  19. Du, Z. Z., Wang, C. M., Sun, H.-P., Lu, H.-Z. & Xie, X. C. Quantum theory of the nonlinear Hall effect. Nat. Commun. 12, 5038 (2021).

    Article  Google Scholar 

  20. Tiwari, A. et al. Giant c-axis nonlinear anomalous Hall effect in Td-MoTe2 and WTe2. Nat. Commun. 12, 2049 (2021).

    Article  Google Scholar 

  21. Boyd, G. D. & Pollack, M. A. Microwave nonlinearities in anisotropic dielectrics and their relation to optical and electro-optical nonlinearities. Phys. Rev. B 7, 5345 (1973).

    Article  Google Scholar 

  22. Bortz, M. L., Eyres, L. A. & Fejer, M. M. Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides. Appl. Phys. Lett. 62, 2012–2014 (1993).

    Article  Google Scholar 

  23. Zhang, Y. & Fu, L. Terahertz detection based on nonlinear Hall effect without magnetic field. Proc. Natl Acad. Sci. USA 118, e2100736118 (2021).

    Article  MathSciNet  Google Scholar 

  24. Zhang, J. et al. Colossal room-temperature terahertz topological response in type-II Weyl semimetal NbIrTe4. Adv. Mater. 34, 2204621 (2022).

    Article  Google Scholar 

  25. Hu, Z. et al. Terahertz nonlinear Hall rectifiers based on spin-polarized topological electronic states in 1T-CoTe2. Adv. Mater. 35, 2209557 (2023).

    Article  Google Scholar 

  26. Belopolski, I. et al. Signatures of a time-reversal symmetric Weyl semimetal with only four Weyl points. Nat. Commun. 8, 942 (2017).

    Article  Google Scholar 

  27. Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    Article  Google Scholar 

  28. Sun, D. et al. Ultrafast hot-carrier-dominated photocurrent in graphene. Nat. Nanotechnol. 7, 114–118 (2012).

    Article  Google Scholar 

  29. Zaccardi, Z. B. et al. Enabling high-power, broadband THz generation with 800-nm pump wavelength. Opt. Express 29, 38084–38094 (2021).

    Article  Google Scholar 

  30. Yoshioka, K. et al. On-chip transfer of ultrashort graphene plasmon wave packets using terahertz electronics. Nat. Electron. 7, 537–544 (2024).

    Article  Google Scholar 

  31. Hwang, E. H. & Das Sarma, S. Linear-in-T resistivity in dilute metals: a Fermi liquid perspective. Phys. Rev. B 99, 085105 (2019).

    Article  Google Scholar 

  32. Palstra, T. T. M., Hebard, A. F., Haddon, R. C. & Littlewood, P. B. Fermi-liquid behavior in the electrical resistivity of K3C60 and Rb3C60. Phys. Rev. B 50, 3462 (1994).

    Article  Google Scholar 

  33. Grissonnanche, G. et al. Linear-in temperature resistivity from an isotropic Planckian scattering rate. Nature 595, 667–672 (2021).

    Article  Google Scholar 

  34. Shen, B. et al. Strange-metal behaviour in a pure ferromagnetic Kondo lattice. Nature 579, 51–55 (2020).

    Article  Google Scholar 

  35. Bhoi, D. et al. Interplay of charge density wave and multiband superconductivity in 2H-PdxTaSe2. Sci. Rep. 6, 24068 (2016).

    Article  Google Scholar 

  36. Liao, M. et al. Coexistence of resistance oscillations and the anomalous metal phase in a lithium intercalated TiSe2 superconductor. Nat. Commun. 12, 5342 (2021).

    Article  Google Scholar 

  37. Tang, J. et al. Dual quantum spin Hall insulator by density-tuned correlations in TaIrTe4. Nature 628, 515–521 (2024).

    Article  Google Scholar 

  38. Du, Z. Z., Wang, C. M., Li, S., Lu, H. Z. & Xie, X. C. Disorder-induced nonlinear Hall effect with time-reversal symmetry. Nat. Commun. 10, 3047 (2019).

    Article  Google Scholar 

  39. Ma, C. et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 604, 266–272 (2022).

    Article  Google Scholar 

  40. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  Google Scholar 

  41. Fröhlich, H. On the theory of superconductivity: the one-dimensional case. Proc. R. Soc. A: Math. Phys. Eng. Sci. 223, 296–305 (1954).

  42. Zhang, Y., Sun, Y. & Yan, B. Berry curvature dipole in Weyl semimetal materials: an ab initio study. Phys. Rev. B 97, 041101 (2018).

    Article  Google Scholar 

  43. Sundaram, G. & Niu, Q. Wave-packet dynamics in slowly perturbed crystals: gradient corrections and Berry-phase effects. Phys. Rev. B 59, 14915 (1999).

    Article  Google Scholar 

  44. Viti, L. et al. Plasma-wave terahertz detection mediated by topological insulators surface states. Nano Lett. 16, 80–87 (2016).

    Article  MathSciNet  Google Scholar 

  45. Guo, C. et al. Anisotropic ultrasensitive PdTe2-based phototransistor for room-temperature long-wavelength detection. Sci. Adv. 6, eabb6500 (2020).

    Article  Google Scholar 

  46. Auton, G. et al. Terahertz detection and imaging using graphene ballistic rectifiers. Nano Lett. 17, 7015–7020 (2017).

    Article  Google Scholar 

  47. Viti, L. et al. Black phosphorus terahertz photodetectors. Adv. Mater. 27, 5567–5572 (2015).

    Article  Google Scholar 

  48. Westlund, A. et al. Terahertz detection in zero-bias InAs self-switching diodes at room temperature. Appl. Phys. Lett. 103, 133504 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

T.X., J.R. and J.X. acknowledge primary support from the Office of Naval Research (Grant No. N00014-24-1-2068). C.F. and J.X. acknowledge further support from the US National Science Foundation (Grant No. DMR-2237761). Y.M., H.J. and Y.W. acknowledge support from the Department of Energy, Office of Basic Energy Sciences (Grant No. DE-SC0024176). J.L. and L.P. are supported by the National Science Foundation Materials Research Science and Engineering Center programme through the UT Knoxville Center for Advanced Materials and Manufacturing (Grant No. DMR-2309083). Y.Z. is supported by the start-up fund at the University of Tennessee Knoxville. D.R. and Y.H. acknowledge support from the National Science Foundation through the University of Wisconsin Materials Research Science and Engineering Center (Grant No. DMR-2309000). K.W. and T.T. acknowledge support from the JSPS (KAKENHI Grant Nos. 21H05233 and 23H02052) and the World Premier International Research Center Initiative, MEXT, Japan. Y.G. and D.v.d.W. are supported by the US Office of Naval Research under PANTHER award number N00014-24-1-2200 through T. Bentley.

Author information

Authors and Affiliations

Authors

Contributions

J.X. conceived the research. J.X. and T.X. designed the experiments. Y.W. and J.X. supervised the project. Y.H. synthesized the bulk high-quality TaIrTe4 crystals under the guidance of D.R. T.T. and K.W. provided the high-quality hBN bulk crystals. Y.G. designed the terahertz-sensing device with H.J. and T.X. under the guidance of D.v.d.W., Y.W. and J.X. Besides, H.J., C.F., T.X. and Y.M. fabricated the devices under the guidance of Y.W. and J.X. In addition, T.X. performed the terahertz photocurrent and SHG measurements and analysed the data with J.X. J.R. conducted the atomic force microscopy measurements. T.X. and H.J. conducted electrical transport measurements. J.L., L.P. and Y.Z. performed the first-principles and Hartree–Fock calculations. All authors discussed the results and jointly wrote the paper.

Corresponding authors

Correspondence to Ying Wang or Jun Xiao.

Ethics declarations

Competing interests

J.X., Y.W. and D.v.d.W. have submitted a patent application (‘Terahertz radiation detectors based on thin films of non-centrosymmetric layered topological semimetals’; US No. 18/448,648) that covers a specific aspect of the manuscript. The other authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Xinlong Xu, Changgan Zeng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information Sections 1–18 and Figs. 1–17.

Source data

Source Data Fig. 1

Source data for Figs. 1b–d.

Source Data Fig. 2

Source data for Figs. 2b–g.

Source Data Fig. 3

Source data for Figs. 3a–f.

Source Data Fig. 4

Source data for Figs. 4a–f.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, T., Jiang, H., Li, J. et al. Terahertz sensing based on the nonlinear electrodynamics of the two-dimensional correlated topological semimetal TaIrTe4. Nat Electron 8, 578–586 (2025). https://doi.org/10.1038/s41928-025-01397-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41928-025-01397-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing