Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A soft magnetoelastic sensor to decode levels of fatigue

Abstract

Fatigue is a complex condition characterized by a decline in a person’s mental or physical performance. Methods to gauge fatigue include self-reported questionnaires, electroencephalography and camera-based technologies. However, these methods are typically restricted to laboratory settings, which limits their wider accessibility. Here we report a soft on-eyelid magnetoelastic sensor that can capture eye-blink parameters in real time and quantitatively decode fatigue levels. The sensor, which works in a self-powered manner, comprises a magnetomechanical coupling layer formed from a silicone rubber matrix embedded with micromagnets and a conductive gold coil patterned onto a thin thermoplastic elastomer layer. This design allows the conversion of eye movements into high-fidelity electrical signals. The sensor exhibits a Young’s modulus of 200 kPa, a stretchability of up to 530% and a pressure sensitivity of 0.2 µA kPa−1. Its thin membrane structure adheres conformally to human upper eyelid tissue and maintains intimate contact during diverse eye movements. When combined with a one-dimensional convolutional neural network and data-processing techniques, the sensor can recognize subtle eye movements and categorize fatigue levels with an accuracy of 96.4% based on six eye-blink parameters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: On-eyelid soft magnetoelastic sensor-based wearable fatigue measurement system.
Fig. 2: Mechanical and electrical characterization of on-eyelid magnetoelastic sensors.
Fig. 3: Perception capability of the on-eyelid magnetoelastic sensor.
Fig. 4: Wearable on-eyelid magnetoelastic sensor for quantitative fatigue assessment.

Similar content being viewed by others

Data availability

Source data are available via figshare at https://doi.org/10.6084/m9.figshare.25272598.v2 (ref. 47). Other data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

No custom code or mathematical algorithm that was central to the conclusions was used in this study.

References

  1. McKinley, R. A., McIntire, L. K., Schmidt, R., Repperger, D. W. & Caldwell, J. A. Evaluation of eye metrics as a detector of fatigue. Hum. Factors 53, 403–414 (2011).

    Article  Google Scholar 

  2. Demerouti, E., Nachreiner, F., Bakker, A. B. & Schaufeli, W. B. The job demands-resources model of burnout. J. Appl. Psychol. 86, 499–512 (2001).

    Article  Google Scholar 

  3. Boksem, M. A. S., Meijman, T. F. & Lorist, M. M. Effects of mental fatigue on attention: an ERP study. Cogn. Brain Res. 25, 107–116 (2005).

    Article  Google Scholar 

  4. Sievertsen, H. H., Gino, F. & Piovesan, M. Cognitive fatigue influences students’ performance on standardized tests. Proc. Natl Acad. Sci. USA 113, 2621–2624 (2016).

    Article  Google Scholar 

  5. Lorist, M. M., Boksem, M. A. S. & Ridderinkhof, K. R. Impaired cognitive control and reduced cingulate activity during mental fatigue. Cogn. Brain Res. 24, 199–205 (2005).

    Article  Google Scholar 

  6. Sanders, A. F. Elements of Human Performance: Reaction Processes And Attention In Human Skill (Lawrence Erlbaum Associates, 1998).

  7. Boksem, M. A. S., Meijman, T. F. & Lorist, M. M. Mental fatigue, motivation and action monitoring. Biol. Psychol. 72, 123–132 (2006).

    Article  Google Scholar 

  8. Chattu, V. K. et al. The global problem of insufficient sleep and its serious public health implications. Healthcare 7, 1–16 (2019).

    Article  Google Scholar 

  9. Hockey, G. R. J., Maule, A. J., Clough, P. J. & Bdzola, L. Effects of negative mood states on risk in everyday decision making. Cogn. Emot. 14, 823–855 (2000).

    Article  Google Scholar 

  10. Li, J. et al. Evaluating the impact of mental fatigue on construction equipment operators’ ability to detect hazards using wearable eye-tracking technology. Autom. Constr. 105, 102835 (2019).

    Article  Google Scholar 

  11. Higgins, J. S. et al. Asleep at the wheel-the road to addressing drowsy driving. Sleep 40, zsx001 (2017).

    Article  Google Scholar 

  12. Penner, I. & Paul, F. Fatigue as a symptom or comorbidity of neurological diseases. Nat. Rev. Neurol. 13, 662–675 (2017).

    Article  Google Scholar 

  13. Caffier, P. P., Erdmann, U. & Ullsperger, P. Experimental evaluation of eye-blink parameters as a drowsiness measure. Eur. J. Appl. Physiol. 89, 319–325 (2003).

    Article  Google Scholar 

  14. Frey, M., Nau, M. & Doeller, C. F. Magnetic resonance-based eye tracking using deep neural networks. Nat. Neurosci. 24, 1772–1779 (2021).

    Article  Google Scholar 

  15. Cori, J. M., Anderson, C., Soleimanloo, S. S., Jackson, M. L. & Howard, M. E. Narrative review: do spontaneous eye blink parameters provide a useful assessment of state drowsiness? Sleep Med. Rev. 45, 95–104 (2019).

    Article  Google Scholar 

  16. Paprocki, R. & Lenskiy, A. What does eye-blink rate variability dynamics tell us about cognitive performance?. Front. Hum. Neurosci. 11, 620 (2017).

    Article  Google Scholar 

  17. Shi, Y. et al. Eye tracking and eye expression decoding based on transparent, flexible and ultra-persistent electrostatic interface. Nat. Commun. 14, 3315 (2023).

    Article  Google Scholar 

  18. Homayounfar, S. Z. et al. Multimodal smart eyewear for longitudinal eye movement tracking. Matter 3, 1275–1293 (2020).

    Article  Google Scholar 

  19. Villari, E. Ueber die Aenderungen des magnetischen Moments, welche der Zug und das Hindurchleiten eines galvanischen Stroms in einem Stabe von Stahl oder Eisen hervorbringen. Ann. Phys. 202, 87–122 (1865).

    Article  Google Scholar 

  20. Clark, A. E. High power rare earth magnetostrictive materials. J. Intell. Mater. Syst. Struct. 4, 70–75 (1993).

    Article  Google Scholar 

  21. Clark, A. E., Wun-Fogle, M., Restorff, J. B. & Lograsso, T. A. Magnetostrictive properties of galfenol alloys under compressive stress. Mater. Trans. 43, 881–886 (2002).

    Article  Google Scholar 

  22. Zhou, Y. et al. Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. 20, 1670–1676 (2021).

    Article  Google Scholar 

  23. Zeng, Z. Y., Hu, C. E., Chen, X. R., Cai, L. C. & Jing, F. Q. Magnetism and phase transitions of iron under pressure. J. Phys.: Condens. Matter 20, 425217 (2008).

    Google Scholar 

  24. Kinloch, I. A., Suhr, J., Lou, J., Young, R. J. & Ajayan, P. M. Composites with carbon nanotubes and graphene: an outlook. Science 362, 547–553 (2018).

    Article  Google Scholar 

  25. Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  Google Scholar 

  26. Yuk, H. et al. 3D printing of conducting polymers. Nat. Commun. 11, 1604 (2020).

    Article  Google Scholar 

  27. Jiang, Y. et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 614, 456–462 (2023).

    Article  Google Scholar 

  28. Huang, X. et al. Transient, implantable, ultrathin biofuel cells enabled by laser-induced graphene and gold nanoparticles composite. Nano Lett. 22, 3447 (2022).

    Article  Google Scholar 

  29. Wang, C. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2, 687 (2018).

    Article  Google Scholar 

  30. Li, J. et al. Ultrathin, soft, radiative cooling interfaces for advanced thermal management in skin electronics. Sci. Adv. 9, adg1837 (2023).

    Article  Google Scholar 

  31. Kuwabara, T., Cogan, D. G. & Johnson, C. C. Structure of the muscles of the upper eyelid. Arch. Ophthalmol. 93, 1189–1197 (1975).

    Article  Google Scholar 

  32. Feig, V. R., Tran, H., Lee, M. & Bao, Z. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat. Commun. 9, 2740 (2018).

    Article  Google Scholar 

  33. Lee, G. H. et al. Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics. Nat. Commun. 13, 2643 (2022).

    Article  Google Scholar 

  34. Mates, J. E., Bayer, I. S., Palumbo, J. M., Carroll, P. J. & Megaridis, C. M. Extremely stretchable and conductive water-repellent coatings for low-cost ultra-flexible electronics. Nat. Commun. 6, 8874 (2015).

    Article  Google Scholar 

  35. Liu, S., Rao, Y., Jang, H., Tan, P. & Lu, N. Strategies for body-conformable electronics. Matter 5, 1104–1136 (2022).

    Article  Google Scholar 

  36. Handorf, A. M., Zhou, Y., Halanski, M. A. & Li, W. J. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 11, 1–15 (2015).

    Article  Google Scholar 

  37. Sergeeva, A., Vikulina, A. S. & Volodkin, D. Porous alginate scaffolds assembled using vaterite CaCO3 crystals. Micromachines 10, 357 (2019).

    Article  Google Scholar 

  38. Solazzo, M., O’Brien, F. J., Nicolosi, V. & Monaghan, M. G. The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioeng. 3, 041501 (2019).

    Article  Google Scholar 

  39. Seddiki, K. et al. Cumulative learning enables convolutional neural network representations for small mass spectrometry data classification. Nat. Commun. 11, 5595 (2020).

    Article  Google Scholar 

  40. Hannun, A. Y. et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 25, 65–69 (2019).

    Article  Google Scholar 

  41. Kuwahara, A., Nishikawa, K., Hirakawa, R., Kawano, H. & Nakatoh, Y. Eye fatigue estimation using blink detection based on eye aspect ratio mapping (EARM). Cogn. Robotics 2, 50–59 (2022).

    Article  Google Scholar 

  42. Shahid, A., Wilkinson, K., Marcu, S. & Shapiro, C. M. in STOP, THAT and One Hundred Other Sleep Scales (Shahid, A. et al.) 369–370 (Springer, 2011).

  43. Shahid, A., Wilkinson, K., Marcu, S. & Shapiro, C. M. in STOP, THAT and One Hundred Other Sleep Scales (Shahid, A. et al.) 209–210 (Springer, 2011).

  44. Che, Z. et al. Speaking without vocal folds using a machine-learning-assisted wearable sensing-actuation system. Nat. Commun. 15, 1873 (2024).

    Article  Google Scholar 

  45. Quirk, T. J. Excel 2007 for Educational and Psychological Statistics 163–179 (Springer, 2012).

  46. Abdi, H. & Williams, L. J. Principal component analysis. Wiley Interdiscip. Rev.: Comput. Stat. 2, 433–459 (2010).

    Article  Google Scholar 

  47. Xu, J. et al. Source data. figshare https://doi.org/10.6084/m9.figshare.25272598.v2 (2025).

Download references

Acknowledgements

J.C. acknowledges the Vernroy Makoto Watanabe Excellence in Research Award at the UCLA Samueli School of Engineering, the Office of Naval Research Young Investigator Award (Award ID N00014-24-1-2065), a National Institutes of Health grant (Award ID R01 CA287326), a National Science Foundation grant (Award No. 2425858), an American Heart Association Innovative Project Award (Award ID 23IPA1054908), an American Heart Association Transformational Project Award (Award ID 23TPA1141360), the American Heart Association’s Second Century Early Faculty Independence Award (Award ID 23SCEFIA1157587) and the NIH National Center for Advancing Translational Science UCLA CTSI (Grant No. KL2TR001882).

Author information

Authors and Affiliations

Contributions

J.C. conceived the idea and supervised the whole project. J.X. and C.D. designed the experiment and fabricated the device. X.W. and Z.C. assisted in the testing the performance of the device. J.X., C.D. and T.T. wrote the paper. X.Z., Y.Z. and J.Y. assisted in designing the figures. S.L. and Y.S. provided support on the cell viability assay. All authors have read the paper, agree with its contents and approved submission.

Corresponding author

Correspondence to Jun Chen.

Ethics declarations

Competing interests

J.C. and J.X. have filed a patent from the University of California, Los Angeles. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Guosong Hong, Shiyuan Wei and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–43, Notes 1–5 and Tables 1–5.

Reporting Summary

Supplementary Video 1

Actual appearance of the 3UM on-eyelid sensor.

Supplementary Video 2

3UM on-eyelid sensor for fatigue detection and management.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Duan, C., Wan, X. et al. A soft magnetoelastic sensor to decode levels of fatigue. Nat Electron 8, 709–720 (2025). https://doi.org/10.1038/s41928-025-01418-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41928-025-01418-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing