Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrated two-dimensional microwave transmitters fabricated on the wafer scale

Abstract

Low-power microwave systems with minimal losses are required due to the growing demand for more efficient communication systems. Two-dimensional semiconductors can potentially be used to create low-power microwave circuits, but the development of integrated two-dimensional microwave systems remains limited. Here we report integrated two-dimensional transmitters fabricated on four-inch monolayer molybdenum disulfide (MoS2) wafers. The transmission loss of monolayer MoS2 channel in switch is 0.51 dB, and the power consumption of the complete 16-element transmitter is 3.2 μW. The 4 × 4 phased array transmitter, which offers both communication and radar functions, exhibits a bandwidth of 6 GHz, a beam scanning angle from −35° to 35°, a transmission distance of 136 m and a standby time of 26 days when powered by a 1,000 mAh-capacity battery. Our complete board-level system has a size of around 3 × 2 cm2, and we show that it can be integrated into a small insect model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analysis and presentation of a monolayer 2D transistor with ultralow loss for electromagnetic waves transmission.
Fig. 2: Fully integrated 2D MoS2 microwave transmitter with complete passive and active components.
Fig. 3: Communication performance of the 2D phased array transmitter.
Fig. 4: Implementation of the monolayer 2D phased array transmitter system and its bifunctional application.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Additional data related to this work are available from the corresponding authors upon reasonable request.

Code availability

The codes that support the theoretical modelling and calculations are available from the corresponding authors upon reasonable request.

References

  1. Kim, Y. et al. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 377, 859–869 (2022).

    Article  Google Scholar 

  2. Li, W. et al. Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision. Nat. Commun. 14, 989 (2023).

    Article  Google Scholar 

  3. Xia, Y. et al. 12-inch growth of uniform MoS2 monolayer for integrated circuit manufacture. Nat. Mater. 22, 1324–1331 (2023).

    Article  Google Scholar 

  4. Wang, S. Y. et al. Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21, 1225–1239 (2022).

    Article  Google Scholar 

  5. Li, N. et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 3, 711–717 (2020).

    Article  Google Scholar 

  6. Gao, Q. G. et al. Scalable high performance radio frequency electronics based on large domain bilayer MoS2. Nat. Commun. 9, 4778 (2018).

    Article  Google Scholar 

  7. Kim, M. et al. Zero-static power radio-frequency switches based on MoS2 atomristors. Nat. Commun. 9, 2524 (2018).

    Article  Google Scholar 

  8. Kim, Y. S. et al. Monolayer molybdenum disulfide switches for 6G communication systems. Nat. Electron. 5, 367–373 (2022).

    Article  Google Scholar 

  9. Zhang, X. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566, 368–372 (2019).

    Article  Google Scholar 

  10. Lin, Y. M. et al. Wafer-scale graphene integrated circuit. Science 332, 1294–1297 (2011).

    Article  Google Scholar 

  11. Wang, Y. et al. A 39-GHz 64-element phased-array transceiver with built-in phase and amplitude calibrations for large-array 5G NR in 65-nm CMOS. IEEE J. Solid-State Circuits 55, 1249–1269 (2020).

    Article  Google Scholar 

  12. Lin, Y. H. et al. A 24-GHz 65-nm CMOS 3-D radial and vertically stacked transmitter front-end IC for vital-sign detection radar applications. In 2022 Asia-Pacific Microwave Conference (APMC) 2022 282–284 (IEEE, 2022).

  13. Méndez-Rial, R. et al. Hybrid MIMO architectures for millimeter wave communications: phase shifters or switches? IEEE Access 4, 247–267 (2016).

    Article  Google Scholar 

  14. Masotti, D. et al. Time-modulation of linear arrays for real-time reconfigurable wireless power transmission. IEEE Trans. Microw. Theory Techn. 64, 331–342 (2016).

    Google Scholar 

  15. Cheng, D. K. Field and Wave Electromagnetics (Addison-Wesley, 1983).

  16. Maxwell, J. C. A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. Lond. 155, 459 (1865).

    Google Scholar 

  17. Wu, C. et al. A phased array based on large-area electronics that operates at gigahertz frequency. Nat. Electron. 4, 757–766 (2021).

    Article  Google Scholar 

  18. Koch, U. et al. A monolithic bipolar CMOS electronic-plasmonic high-speed transmitter. Nat. Electron. 3, 338–345 (2020).

    Article  Google Scholar 

  19. Li, W. Y. et al. Monolayer black phosphorus and germanium arsenide transistors via van der Waals channel thinning. Nat. Electron. 7, 131–137 (2024).

    Article  Google Scholar 

  20. Li, T. T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article  Google Scholar 

  21. Jornet, J. M. et al. Wireless communications sensing and security above 100 GHz. Nat. Commun. 14, 841 (2023).

    Article  Google Scholar 

  22. Elgaard, C. et al. Efficient wideband mmW transceiver front end for 5G base stations in 22-nm FD-SOI CMOS. IEEE J. Solid-State Circuits 59, 321–336 (2024).

    Article  Google Scholar 

  23. Di, M. F. et al. A study of ESD-mmwave-switch co-design of 28GHz distributed travelling wave switch in 22nm FDSOI for 5G systems. IEEE J. Electron Devices 9, 1290–1296 (2021).

    Article  Google Scholar 

  24. Erturk, V. et al. A high-power and broadband GaN SPDT MMIC switch using gate-optimized HEMTs. IEEE Microw. Wireless Technol. Lett. 33, 1207–1210 (2023).

    Article  Google Scholar 

  25. Hangai, M. et al. 2-12 GHz high-power GaN MMIC switch utilizing stacked-FET circuits. In 2019 14th European Microwave Integrated Circuits Conference (EuMIC) 286–289 (IEEE, 2019).

  26. Lu, D. et al. Highly selective bandpass switch block with applications of MMIC SPDT switch and switched filter bank. IEEE J. Solid-State Circuits Lett. 5, 190–193 (2022).

    Article  Google Scholar 

  27. Wu, T. X. et al. A sub-6G SP32T single-chip switch with nanosecond switching speed for 5G applications in 0.25 μm GaAs technology. Electronics 10, 1482 (2021).

    Article  Google Scholar 

  28. Suh, B. et al. A 28-GHz reconfigurable SP4T switch network for a switched beam system in 65-nm CMOS. IEEE Trans. Microw. Theory Techn. 68, 2057–2064 (2020).

    Article  Google Scholar 

  29. Tsai, Z. Y. et al. Manufacturing and testing of radio frequency MEMS switches using the complementary metal oxide semiconductor process. Sensors 21, 1396 (2021).

    Article  Google Scholar 

  30. Manente, D. et al. A 22-31 GHz bidirectional 5G transceiver front-end in 28 nm CMOS. In IEEE 47th European Solid State Circuits Conference (SSCIRC) 283–286 (IEEE, 2021).

  31. Sanjari, P. et al. An integrated photonic-assisted phased array transmitter for direct fiber to mm-wave links. Nat. Commun. 14, 1414 (2023).

    Article  Google Scholar 

  32. Park, H. C. et al. 4.1 A 39GHz-band CMOS 16-channel phased-array transceiver IC with a companion dual-stream IF transceiver IC for 5G NR base-station applications. In 2020 IEEE International Solid-State Circuits Conference (ISSCC) 76–78 (IEEE, 2020).

  33. Lu, X. Y. et al. 4.6 Space-time modulated 71-to-76GHz mm-wave transmitter array for physically secure directional wireless links. In 2020 IEEE International Solid-State Circuits Conference (ISSCC) 86–88 (IEEE, 2020).

  34. Sen, P. et al. Multi-kilometre and multi-gigabit-per-second sub-terahertz communications for wireless backhaul applications. Nat. Electron. 6, 164–175 (2023).

    Article  Google Scholar 

  35. Ball, E. A. et al. A mmwave transmitting time modulated array using bespoke GaAs integrated circuits—prototype design and laboratory trials at 73 GHz. IEEE Open J. Antennas Propag. 6, 144–162 (2025).

    Article  Google Scholar 

  36. Moradi, A. et al. An energy-efficient high data-rate 915 MHz FSK wireless transmitter for medical applications. Analog Integr. Circ. Sig. Process. 83, 85–94 (2015).

    Article  Google Scholar 

  37. Pashaeifar, M. et al. A millimeter-wave mutual-coupling-resilient double-quadrature transmitter for 5G applications. IEEE J. Solid-State Circuits 56, 3784–3798 (2021).

    Article  Google Scholar 

  38. Fan, D. X. et al. Two-dimensional semiconductor integrated circuits operating at gigahertz frequencies. Nat. Electron. 6, 879–887 (2023).

    Article  Google Scholar 

  39. Sanne, A. et al. Embedded gate CVD MoS2 microwave FETs. npj 2D Mater. Appl. 1, 26 (2017).

    Article  Google Scholar 

  40. Polyushkin, D. K. et al. Analogue two-dimensional semiconductor electronics. Nat. Electron. 3, 486–491 (2020).

    Article  Google Scholar 

  41. Kim, M. et al. Analogue switches made from boron nitride monolayers for application in 5G and terahertz communication systems. Nat. Electron. 3, 479–485 (2020).

    Article  Google Scholar 

  42. Montanaro, A. et al. Sub-THz wireless transmission based on graphene-integrated optoelectronic mixer. Nat. Commun. 14, 6471 (2023).

    Article  Google Scholar 

  43. Wu, Y. Q. et al. High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472, 74–78 (2011).

    Article  Google Scholar 

  44. Wang, Z. J. et al. A linearity-enhanced 18.7-36.5-GHz LNA with 1.5-2.1-dB NF for radar applications. IEEE Microw. Wireless Compon. Lett. 32, 972–975 (2022).

    Article  Google Scholar 

  45. Pour, F. L. et al. Design and performance investigation of a temperature compensated transmitter with GaN HEMTs for phased-array applications. IEEE Trans. Microw. Theory Techn. 70, 3640–3651 (2022).

    Article  Google Scholar 

  46. Liu, R. J. et al. A 24-28-GHz GaN MMIC synchronous doherty power amplifier with enhanced load modulation for 5G mm-wave applications. IEEE Trans. Microw. Theory Techn. 70, 3910–3922 (2022).

    Article  Google Scholar 

  47. Huang, Y. S. et al. A 1T2R heterogeneously integrated phased-array FMCW radar transceiver with AMC-based antenna in package in the W-band. IEEE Trans. Microw. Theory Techn. 72, 3772–3787 (2023).

    Article  Google Scholar 

  48. Venkatesh, S. et al. Secure space-time-modulated millimetre-wave wireless links that are resilient to distributed eavesdropper attacks. Nat. Electron. 4, 827–836 (2021).

    Article  Google Scholar 

  49. Fang, Z. Y. et al. A silicon-based radio platform for integrated edge sensing and communication toward sustainable healthcare. IEEE Trans. Microw. Theory Techn. 71, 1296–1311 (2023).

    Article  Google Scholar 

  50. Park, J. H. et al. A 94-GHz high resolution radar using time interleaving active array in 65-nm CMOS. IEEE Access 11, 141473–141484 (2023).

    Article  Google Scholar 

  51. Eltaliawy, A. et al. A broadband, mm-wave SPST switch with minimum 50-dB isolation in 45-nm SOI-CMOS. IEEE Trans. Microw. Theory Techn. 69, 2899–2906 (2021).

    Article  Google Scholar 

  52. Su, Y. P. et al. A 24-GHz fully integrated CMOS transceiver for FMCW radar applications. IEEE J. Solid-State Circuits 56, 3307–3317 (2021).

    Article  Google Scholar 

  53. Cheon, C. D. et al. A new wideband, low insertion loss, high linearity SiGe RF switch. IEEE Microw. Wireless Compon. Lett. 30, 985–988 (2020).

    Article  Google Scholar 

  54. Lee, S. et al. An E-band CMOS direct conversion IQ transmitter for radar and communication applications. In 2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) 111–114 (IEEE, 2022).

Download references

Acknowledgements

This work was equally supported by the National Key Research and Development Program of China under grant number 2021YFA1200500, National Natural Science Foundation of China under grant numbers 62304042, 62525401, 62334011 and 62104039, and the New Cornerstone Science Foundation through the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: P.Z., S.M. and W.B. Methodology: P.Z., S.M. and L.Z. Investigation: S.M., T.W., X.D., H.Q., Z.X., T.Y., X.L., J.Z., H.Y., Z.W. and L.Z. Visualization: L.Z., T.W. and X.D. Funding acquisition: P.Z., S.M. and W.B. Supervision: P.Z., S.M. and W.B. Writing—original draft: L.Z., T.W. and X.D. Writing—review and editing: T.W., L.Z., X.D., H.Q., Z.X., T.Y., X.L., J.Z., H.Y., Z.W., W.B., S.M. and P.Z.

Corresponding authors

Correspondence to Wenzhong Bao, Shunli Ma or Peng Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Martino Aldrigo, Junho Park and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–7, Figs. 1–37, Tables 1–3 and Discussion.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Zhu, L., Dong, X. et al. Integrated two-dimensional microwave transmitters fabricated on the wafer scale. Nat Electron (2025). https://doi.org/10.1038/s41928-025-01452-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41928-025-01452-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing