Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioselective Chan–Lam S-arylation of sulfenamides

Abstract

Sulfur stereogenic molecules have a significant impact on drug development. Among them, sulfilimines are chiral molecules bearing S(IV) stereocentres, which exhibit great value in chemistry and biology but have so far been synthetically challenging to achieve. Similarly, it has also been a challenge to control the stereochemistry in Chan–Lam coupling, which has been widely used to construct C–N, C–O and C–S bonds by coupling nucleophiles with boronic acids using copper complexes. Here we report a highly chemoselective and enantioselective Chan–Lam S-arylation of sulfenamides with arylboronic acids to deliver an array of thermodynamically disfavoured aryl sulfilimines containing a sulfur stereocentre. A copper catalyst from a 2-pyridyl N-phenyl dihydroimidazole ligand has been designed that enables effective enantiocontrol by means of a well-defined chiral environment and high reactivity that outcompetes the background racemic transformation. A combined experimental and computational study establishes the reaction mechanism and unveils the origin of chemoselectivity and stereoselectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background and conceptual design.
Fig. 2: Scope of the substrates.
Fig. 3: Synthetic applications.
Fig. 4: Computational investigation of the reaction mechanism.

Similar content being viewed by others

Data availability

Detailed experimental procedures, characterization data, NMR spectra of compounds, detailed computational results and calculated structures are available within the Supplementary Information and related files. The X-ray crystallographic coordinates for the structure reported in this study have been deposited at the CCDC under deposition number CCDC 2215359 (for 3ba). These data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif. Any further relevant data are available from the authors upon request.

References

  1. Lücking, U. Sulfoximines: a neglected opportunity in medicinal chemistry. Angew. Chem. Int. Ed. 52, 9399–9408 (2013).

    Article  Google Scholar 

  2. Lücking, U. New opportunities for the utilization of the sulfoximine group in medicinal chemistry from the drug designer’s perspective. Chem. Eur. J. 28, e202201993 (2022).

    Article  PubMed  Google Scholar 

  3. Kaiser, D., Klose, I., Oost, R., Neuhaus, J. & Maulide, N. Bond-forming and -breaking reactions at sulfur(IV): sulfoxides, sulfonium salts, sulfur ylides, and sulfinate salts. Chem. Rev. 119, 8701–8780 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wojaczynska, E. & Wojaczynski, J. Modern stereoselective synthesis of chiral sulfinyl compounds. Chem. Rev. 120, 4578–4611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gilchrist, T. L. & Moody, C. J. The chemistry of sulfilimines. Chem. Rev. 77, 409–435 (1977).

    Article  CAS  Google Scholar 

  6. Taylor, P. C. Sulfimides (sulfilimines): applications in stereoselective synthesis. Sulfur Rep. 21, 241–280 (1999).

    Article  CAS  Google Scholar 

  7. Bizet, V., Hendriks, C. M. & Bolm, C. Sulfur imidations: access to sulfimides and sulfoximines. Chem. Soc. Rev. 44, 3378–3390 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Vanacore, R. et al. A sulfilimine bond identified in collagen IV. Science 325, 1230–1234 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin, S. et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 355, 597–602 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Christian, A. H. et al. A physical organic approach to tuning reagents for selective and stable methionine bioconjugation. J. Am. Chem. Soc. 141, 12657–12662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu, K. et al. An ultrasensitive cyclization-based fluorescent probe for imaging native HOBr in live cells and zebrafish. Angew. Chem. Int. Ed. 55, 12751–12754 (2016).

    Article  CAS  Google Scholar 

  12. Lücking, U. Neglected sulfur(VI) pharmacophores in drug discovery: exploration of novel chemical space by the interplay of drug design and method development. Org. Chem. Front. 6, 1319–1324 (2019).

    Article  Google Scholar 

  13. Zhang, X., Wang, F. & Tan, C.-H. Asymmetric synthesis of S(IV) and S(VI) stereogenic centers. JACS Au 3, 700–714 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takada, H. et al. Catalytic asymmetric sulfimidation. J. Org. Chem. 62, 6512–6518 (1997).

    Article  CAS  Google Scholar 

  15. Tomooka, C. S. & Carreira, E. M. Enantioselective nitrogen transfer to sulfides from nitridomanganese(V) complexes. Helv. Chim. Acta 85, 3773–3784 (2002).

    Article  CAS  Google Scholar 

  16. Armstrong, A., Edmonds, I. D. & Swarbrick, M. E. Efficient nitrogen transfer from aldehyde-derived N-acyloxaziridines. Tetrahedron Lett. 44, 5335–5338 (2003).

    Article  CAS  Google Scholar 

  17. Collet, F., Dodd, R. H. & Dauban, P. Stereoselective rhodium-catalyzed imination of sulfides. Org. Lett. 10, 5473–5476 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, J., Frings, M. & Bolm, C. Enantioselective nitrene transfer to sulfides catalyzed by a chiral iron complex. Angew. Chem. Int. Ed. 52, 8661–8665 (2013).

    Article  CAS  Google Scholar 

  19. Uchida, T. & Katsuki, T. Asymmetric nitrene transfer reactions: sulfimidation, aziridination and C–H amination using azide compounds as nitrene precursors. Chem. Rec. 14, 117–129 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Lebel, H., Piras, H. & Bartholoméüs, J. Rhodium-catalyzed stereoselective amination of thioethers with N-mesyloxycarbamates: DMAP and bis(DMAP)CH2Cl2 as key additives. Angew. Chem. Int. Ed. 53, 7300–7304 (2014).

    Article  CAS  Google Scholar 

  21. Yoshitake, M., Hayashi, H. & Uchida, T. Ruthenium-catalyzed asymmetric N-acyl nitrene transfer reaction: imidation of sulfide. Org. Lett. 22, 4021–4025 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Annapureddy, R. R. et al. Silver-catalyzed enantioselective sulfimidation mediated by hydrogen bonding interactions. Angew. Chem. Int. Ed. 60, 7920–7926 (2021).

    Article  CAS  Google Scholar 

  23. Greenwood, N. S., Champlin, A. T. & Ellman, J. A. Catalytic enantioselective sulfur alkylation of sulfenamides for the asymmetric synthesis of sulfoximines. J. Am. Chem. Soc. 144, 17808–17814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kikuchi, K., Furukawa, N., Moriyama, M. & Oae, S. Nucleophilic substitution of tricoordinate sulfur atom of sulfonium salt with retention of configuration. Different stereochemistry of substitution by amidate anions. Bull. Chem. Soc. Jpn 58, 1934–1941 (1985).

    Article  CAS  Google Scholar 

  25. Takada, H., Oda, M., Oyamada, A., Ohe, K. & Uemura, S. Catalytic diastereoselective sulfimidation of diaryl sulfides and application of chiral sulfimides to asymmetric allylic alkylation. Chirality 12, 299–312 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Tsuzuki, S. & Kano, T. Asymmetric synthesis of chiral sulfimides through the O-alkylation of enantioenriched sulfinamides and addition of carbon nucleophiles. Angew. Chem. Int. Ed. 62, e202300637 (2023).

    Article  CAS  Google Scholar 

  27. West, M. J., Fyfe, J. W. B., Vantourout, J. C. & Watson, A. J. B. Mechanistic development and recent applications of the Chan–Lam amination. Chem. Rev. 119, 12491–12523 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, J. Q., Li, J. H. & Dong, Z. B. A review on the latest progress of Chan-Lam coupling reaction. Adv. Synth. Catal. 362, 3311–3331 (2020).

    Article  CAS  Google Scholar 

  29. King, A. E., Brunold, T. C. & Stahl, S. S. Mechanistic study of copper-catalyzed aerobic oxidative coupling of arylboronic esters and methanol: insights into an organometallic oxidase reaction. J. Am. Chem. Soc. 131, 5044–5045 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. King, A. E., Ryland, B. L., Brunold, T. C. & Stahl, S. S. Kinetic and spectroscopic studies of aerobic copper(II)-catalyzed methoxylation of arylboronic esters and insights into aryl transmetalation to copper(II). Organometallics 31, 7948–7957 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vantourout, J. C., Miras, H. N., Isidro-Llobet, A., Sproules, S. & Watson, A. J. Spectroscopic studies of the Chan–Lam amination: a mechanism-inspired solution to boronic ester reactivity. J. Am. Chem. Soc. 139, 4769–4779 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Bose, S., Dutta, S. & Koley, D. Entering chemical space with theoretical underpinning of the mechanistic pathways in the Chan–Lam amination. ACS Catal. 12, 1461–1474 (2022).

    Article  CAS  Google Scholar 

  33. Pooventhiran, T., Khilari, N. & Koley, D. Mechanistic avenues in the Chan-Lam-based etherification reaction: a computational exploration. Chem. Eur. J. 29, e202302983 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Hardouin Duparc, V., Bano, G. L. & Schaper, F. Chan–Evans–Lam couplings with copper iminoarylsulfonate complexes: scope and mechanism. ACS Catal. 8, 7308–7325 (2018).

    Article  CAS  Google Scholar 

  35. Liang, Q. et al. Synthesis of sulfilimines enabled by copper-catalyzed S-arylation of sulfenamides. J. Am. Chem. Soc. 145, 6310–6318 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, Y. et al. Synthesis of sulfilimines via selective S–C bond formation in water. Org. Lett. 25, 2134–2138 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Jutand, A. & Grimaud, L. Role of fluoride ions in palladium-catalyzed cross-coupling reactions. Synthesis 49, 1182–1189 (2016).

    Article  Google Scholar 

  38. Akutagawa, K., Furukawa, N. & Oae, S. Preparation of N-(arylsulfonyl)sulfoximines by oxidation of N-(arylsulfonyl)sulfilimines with sodium hypochlorite in a two-phase system. J. Org. Chem. 49, 2282–2284 (2002).

    Article  Google Scholar 

  39. Siemeister, G. et al. BAY 1000394, a novel cyclin-dependent kinase inhibitor, with potent antitumor activity in mono- and in combination treatment upon oral application. Mol. Cancer Ther. 11, 2265–2273 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, E. et al. Novel compound and pharmaceutical composition comprising same as active ingredient. US patent 2020/0190024 A1 (2020).

  41. Albrecht, B. K. et al. Modulators of methyl modifying enzymes, compositions and uses thereof. US patent 9206128 B2 (2015).

  42. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  43. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  44. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  45. Petersson, G. A. & Al-Laham, M. A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 94, 6081–6090 (1991).

    Article  CAS  Google Scholar 

  46. Andrae, D., Häußermann, U., Dolg, M., Stoll, H. & Preuß, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 77, 123–141 (1990).

    Article  CAS  Google Scholar 

  47. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    Article  CAS  Google Scholar 

  48. McLean, A. D. & Chandler, G. S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem. Phys. 72, 5639–5648 (1980).

    Article  CAS  Google Scholar 

  49. Krishnan, R., Binkley, J. S., Seeger, R. & Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980).

    Article  CAS  Google Scholar 

  50. Cossi, M., Rega, N., Scalmani, G. & Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 24, 669–681 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Kozuch, S. & Shaik, S. How to conceptualize catalytic cycles? The energetic span model. Acc. Chem. Res. 44, 101–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Kitaura, K. & Morokuma, K. A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation. Int. J. Quantum Chem. 10, 325–340 (1976).

    Article  CAS  Google Scholar 

  53. Bickelhaupt, F. M. & Houk, K. N. Analyzing reaction rates with the distortion/interaction-activation strain model. Angew. Chem. Int. Ed. 56, 10070–10086 (2017).

    Article  CAS  Google Scholar 

  54. Horn, P. R. & Head-Gordon, M. Alternative definitions of the frozen energy in energy decomposition analysis of density functional theory calculations. J. Chem. Phys. 144, 084118 (2016).

    Article  PubMed  Google Scholar 

  55. Horn, P. R., Mao, Y. & Head-Gordon, M. Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies. J. Chem. Phys. 144, 114107 (2016).

    Article  PubMed  Google Scholar 

  56. Horn, P. R., Mao, Y. & Head-Gordon, M. Probing non-covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals. Phys. Chem. Chem. Phys. 18, 23067–23079 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Shao, Y. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215 (2015).

    Article  CAS  Google Scholar 

  58. Thomas, A. A. et al. Mechanistically guided design of ligands that significantly improve the efficiency of CuH-catalyzed hydroamination reactions. J. Am. Chem. Soc. 140, 13976–13984 (2017).

    Article  Google Scholar 

  59. Chan, L., Morris, G. M. & Hutchison, G. R. Understanding conformational entropy in small molecules. J. Chem. Theory Comput. 17, 2099–2106 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.J. thanks the National Natural Science Foundation of China (U23A20528), Guangdong Basic and Applied Basic Research Foundation (2021B1515120046 and 2022B1515120075), the Science and Technology Innovation Commission of Shenzhen Municipality (JCYJ20220818101404010 and 20220815113214003) and the High Level of Special Funds (G03050K003) for financial support. M.C.K. thanks the National Institutes of Health (NIH; R35 GM131902) for financial support and Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support (ACCESS; TG-CHE120052) for computational support. We are grateful to Y. Yu and X. Chang (both at SUSTech) for High Resolution Mass Spectrum and X-ray crystallography, respectively. We also acknowledge the assistance of SUSTech Core Research Facilities.

Author information

Authors and Affiliations

Authors

Contributions

T.J. conceived and supervised the project. Q.L., X.Z. and Z.X. performed the experiments. M.C.K. directed the computational study. M.E.R. carried out the computational study. T.J., Q.L. and X.Z. analysed the data. All authors participated in writing the manuscript.

Corresponding authors

Correspondence to Marisa C. Kozlowski or Tiezheng Jia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Taichi Kano, Debasis Koley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–333, Tables 1–21, Methods, notes and references.

Supplementary Data 1

Crystallographic data for compound 3ba.

Supplementary Data 2

Cif check report for 3ba.

Supplementary Data 3

Computational data.

Supplementary Data 4

Computational data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Q., Zhang, X., Rotella, M.E. et al. Enantioselective Chan–Lam S-arylation of sulfenamides. Nat Catal 7, 1010–1020 (2024). https://doi.org/10.1038/s41929-024-01213-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-024-01213-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing