Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unveiling metal mobility in a liquid Cu–Ga catalyst for ammonia synthesis

Abstract

The outlook for sustainable economic and ecological growth projects an ammonia economy as a key enabler to the energy transition landscape. The predominance of the Haber–Bosch process, however, as the current industrial process for producing ammonia subdues the sustainability of establishing an energy route predicated on ammonia. Here we capitalize on the inherent atomic structure of liquid metal alloys and the ability to modulate the electronic and geometric structures of liquid metal catalysts to drive the thermocatalytic synthesis of ammonia. By exploiting the mobility of the metal atoms in the liquid metal configuration and purposefully designing disordered metal catalysts, we provide insights into designing future transition metal-based catalysts that produce ammonia from gaseous nitrogen and hydrogen under mild operating conditions. The use of a molten Cu–Ga catalyst offers a dynamic metal complex with synergistic advantages that lift the activity of its constituent elements, exceeding the activity of a control Ru-based catalyst.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ammonia synthesis using a supported Cu–Ga liquid metal catalyst.
Fig. 2: Catalytic performance of the Cu–Ga alloy.
Fig. 3: Liquid metal catalyst characterization.
Fig. 4: MD modelling.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available in the paper and Supplementary Information or from the corresponding authors on reasonable request. The MD trajectories are available in Supplementary Data.

References

  1. Fu, X. et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 379, 707–712 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Salmon, N. & Bañares-Alcántara, R. Offshore green ammonia synthesis. Nat. Synth. 2, 604–611 (2023).

    Article  Google Scholar 

  3. Lee, B. et al. Pathways to a green ammonia future. ACS Energy Lett. 7, 3032–3038 (2022).

    Article  CAS  Google Scholar 

  4. Wang, Q. et al. Ternary ruthenium complex hydrides for ammonia synthesis via the associative mechanism. Nat. Catal. 4, 959–967 (2021).

    Article  CAS  Google Scholar 

  5. Lin, B. et al. Ammonia synthesis activity of alumina-supported ruthenium catalyst enhanced by alumina phase transformation. ACS Catal. 9, 1635–1644 (2019).

    Article  CAS  Google Scholar 

  6. Ye, T.-N. et al. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 583, 391–395 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Gao, W. et al. Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers. Nat. Energy 3, 1067–1075 (2018).

    Article  CAS  Google Scholar 

  8. Zuraiqi, K. et al. Liquid metals in catalysis for energy applications. Joule 4, 2290–2321 (2020).

    Article  CAS  Google Scholar 

  9. Daeneke, T. et al. Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Upham, D. C. et al. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 358, 917 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Taccardi, N. et al. Gallium-rich Pd–Ga phases as supported liquid metal catalysts. Nat. Chem. 9, 862–867 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Palmer, C. et al. Dry reforming of methane catalysed by molten metal alloys. Nat. Catal. 3, 83–89 (2020).

    Article  CAS  Google Scholar 

  13. Zuraiqi, K. et al. Direct conversion of CO2 to solid carbon by Ga-based liquid metals. Energy Environ. Sci. 15, 595–600 (2022).

    Article  CAS  Google Scholar 

  14. Esrafilzadeh, D. et al. Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nat. Commun. 10, 865 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kawamura, F. & Taniguchi, T. Synthesis of ammonia using sodium melt. Sci. Rep. 7, 11578 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tang, Z., Meng, X., Shi, Y. & Guan, X. Lithium-based loop for ambient-pressure ammonia synthesis in a liquid alloy-salt catalytic system. ChemSusChem 14, 4697–4707 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Hagen, S. et al. Ammonia synthesis with barium-promoted iron–cobalt alloys supported on carbon. J. Catal. 214, 327–335 (2003).

    Article  CAS  Google Scholar 

  18. Rosowski, F. et al. Ruthenium catalysts for ammonia synthesis at high pressures: preparation, characterization, and power-law kinetics. Appl. Catal. A 151, 443–460 (1997).

    Article  CAS  Google Scholar 

  19. Bosch, C. & Mittasch, A. Patent number US1128843A (Google Patents, 1915).

  20. Martín, A. J., Mitchell, S., Mondelli, C., Jaydev, S. & Pérez-Ramírez, J. Unifying views on catalyst deactivation. Nat. Catal. 5, 854–866 (2022).

    Article  Google Scholar 

  21. Rivera Rocabado, D. S., Aizawa, M., Noguchi, T. G., Yamauchi, M. & Ishimoto, T. Uncovering the mechanism of the hydrogen poisoning on Ru nanoparticles via density functional theory calculations. Catal. 12, 331 (2022).

    Article  CAS  Google Scholar 

  22. Wang, Y. et al. Shielding protection by mesoporous catalysts for improving plasma-catalytic ambient ammonia synthesis. J. Am. Chem. Soc. 144, 12020–12031 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, F. et al. Insights into the activation effect of H2 pretreatment on Ag/Al2O3 catalyst for the selective oxidation of ammonia. ACS Catal. 9, 1437–1445 (2019).

    Article  CAS  Google Scholar 

  24. Sayan, Ş., Kantcheva, M., Suzer, S. & Uner, D. O. FTIR characterization of Ru/SiO2 catalyst for ammonia synthesis. J. Mol. Struct. 480-481, 241–245 (1999).

    Article  CAS  Google Scholar 

  25. Mao, C. et al. Beyond the thermal equilibrium limit of ammonia synthesis with dual temperature zone catalyst powered by solar light. Chem 5, 2702–2717 (2019).

    Article  CAS  Google Scholar 

  26. Tang, X. et al. Facile fabrication of nanosheet-assembled MnCoOx hollow flower-like microspheres as highly effective catalysts for the low-temperature selective catalytic reduction of NOx by NH3. Environ. Sci. Pollut. Res. 26, 35846–35859 (2019).

    Article  CAS  Google Scholar 

  27. Monier, G. et al. DFT and experimental FTIR investigations of early stages of (001) and (111)B GaAs surface nitridation. Appl. Surf. Sci. 465, 787–794 (2019).

    Article  CAS  Google Scholar 

  28. Lou, H. et al. Negative expansions of interatomic distances in metallic melts. Proc. Natl Acad. Sci. USA 110, 10068–10072 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruffman, C., Lambie, S., Steenbergen, K. G. & Gaston, N. Structural and electronic changes in Ga–In and Ga–Sn alloys on melting. Phys. Chem. Chem. Phys. 25, 1236–1247 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Kim, M., Biswas, S., Nava, G., Wong, B. M. & Mangolini, L. Reduced energy cost of ammonia synthesis Via RF plasma pulsing. ACS Sustainable Chem. Eng. 10, 15135–15147 (2022).

    Article  CAS  Google Scholar 

  31. Yamijala, S. S. R. K. C. et al. Harnessing plasma environments for ammonia catalysis: mechanistic insights from experiments and large-scale ab initio molecular dynamics. J. Phys. Chem. Lett. 11, 10469–10475 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Rahim, M. A. et al. Low-temperature liquid platinum catalyst. Nat. Chem. 14, 935–941 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Tang, J. et al. Oscillatory bifurcation patterns initiated by seeded surface solidification of liquid metals. Nat. Synth. 1, 158–169 (2022).

    Article  Google Scholar 

  34. Tang, J. et al. Unique surface patterns emerging during solidification of liquid metal alloys. Nat. Nanotechnol. 16, 431–439 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, Q., Guo, J. & Chen, P. Recent progress towards mild-condition ammonia synthesis. J. Energy Chem. 36, 25–36 (2019).

    Article  Google Scholar 

  36. Li, X., Zhang, X., Everitt, H. O. & Liu, J. Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production. Nano Lett. 19, 1706–1711 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Hodgetts, R. Y. et al. Refining universal procedures for ammonium quantification via Rapid 1H NMR analysis for dinitrogen reduction studies. ACS Energy Lett. 5, 736–741 (2020).

    Article  CAS  Google Scholar 

  38. Chen, L.-W. et al. Metal–organic framework membranes encapsulating gold nanoparticles for direct plasmonic photocatalytic nitrogen fixation. J. Am. Chem. Soc. 143, 5727–5736 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Andersen, S. Z. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Zhao, Y. et al. Revealing ammonia quantification minefield in photo/electrocatalysis. Angew. Chem. Int. Ed. 60, 21728–21731 (2021).

    Article  CAS  Google Scholar 

  41. Zhao, Y. et al. Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH3 production RATES? Adv. Sci. 6, 1802109 (2019).

    Article  Google Scholar 

  42. Choi, J. et al. Identification and elimination of false positives in electrochemical nitrogen reduction studies. Nat. Commun. 11, 5546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Izelaar, B. et al. Identification, quantification, and elimination of NOx and NH3 impurities for aqueous and li-mediated nitrogen reduction experiments. ACS Energy Lett. 8, 3614–3620 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Bearden, J. A. & Burr, A. F. Reevaluation of X-ray atomic energy levels. Rev. Mod. Phys. 39, 125–142 (1967).

    Article  CAS  Google Scholar 

  46. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  47. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  49. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  50. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Giorgino, T. Computing diffusion coefficients in macromolecular simulations: the Diffusion Coefficient Tool for VMD. J. Open Source Soft. 4, 1698 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

T.D. acknowledges support from the Australian Research Council (ARC) via the ARC DECRA initiative (DE190100100) and the ARC Discovery Project scheme (DP220101923). T.D. and C.J.P. acknowledge the ARC Centre of Excellence in future low-energy electronics technology via CE170100039. S.S. acknowledges support from the ARC via the ARC DECRA initiative (DE190101450). S.P.R. and N.M. acknowledge the support of the ARC under the Centre of Excellence scheme (project no. CE170100026). K.Z., T.D., J.M. and R.H. acknowledge that this research was undertaken on the XAS beamline at the Australian Synchrotron, part of ANSTO. This research was undertaken with the assistance of supercomputing resources from the National Computational Infrastructure, which is supported by the Australian Government, under the National Computational Merit Allocation Scheme (Project kl59). This research was undertaken with the assistance from QUT’s Central Analytical Research Facility supported by QUT’s Research Portfolio.

Author information

Authors and Affiliations

Authors

Contributions

K.Z., K.C., S.S. and T.D. initiated, designed and led the work. Y.J., K.Z., R.H., T.D., S.S., L.W., H.Y.Z. and J.H. developed and contributed to discussion on the methodology. Y.J., K.Z., C.J.P., J.M. and R.H. carried out the experimental work and characterization. K.Z. and Y.J. developed the visualization of the work. A.C., N.M., S.P.R. and M.J.S.S. performed the computational studies and consulted on the MD calculations. K.Z. prepared the initial manuscript. All authors revised and contributed to the final version of the manuscript.

Corresponding authors

Correspondence to Sarina Sarina or Torben Daeneke.

Ethics declarations

Competing interests

Patent protection is being sought for the invention described in this paper (provisional Australia patent 2022903994).

Peer review

Peer review information

Nature Catalysis thanks Xiaofei Guan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–34 and Table 1.

Supplementary Data 1

MD electronic structures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuraiqi, K., Jin, Y., Parker, C.J. et al. Unveiling metal mobility in a liquid Cu–Ga catalyst for ammonia synthesis. Nat Catal 7, 1044–1052 (2024). https://doi.org/10.1038/s41929-024-01219-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-024-01219-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing