Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Steam methane reforming using a regenerable antenna–reactor plasmonic photocatalyst

Abstract

Steam methane reforming (SMR) is the major industrial process for hydrogen production. It currently relies on high-temperature operating conditions and is associated with high carbon intensity. Photocatalytic SMR could provide greener and potentially more efficient H2 production. Here we demonstrate a plasmonic photocatalytic approach based on a Cu–Rh antenna–reactor photocatalyst for highly reactive, selective and stable SMR due to plasmon-mediated hot carrier contributions. We observe that the photocatalyst is intrinsically stable in photocatalysis but deactivates under thermocatalysis; however, the thermally deactivated catalyst can be regenerated by resonant illumination. The regeneration mechanism is studied in detail and found to be caused by plasmon-induced associative desorption of oxygen and carbon species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photocatalytic SMR.
Fig. 2: Study of the mechanism of photocatalytic SMR.
Fig. 3: Thermocatalytic deactivation and photocatalytic regeneration.
Fig. 4: Study of the mechanism of photocatalytic regeneration.

Similar content being viewed by others

Data availability

Additional datasets generated and/or analysed during the current study that are not included in the published Article and associated Supplementary Information, including the atomic coordinates for the JDFTx calculations, are available from the open-access Zenodo repository at https://doi.org/10.5281/zenodo.13377300 (ref. 66).

Code availability

Python codes for the EM simulation and hot carrier distribution calculations are available from the open-access Zenodo repository at https://doi.org/10.5281/zenodo.13377300 (ref. 66).

References

  1. Guo, X. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344, 616–619 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Upham, D. C. et al. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 358, 917–921 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Sushkevich, V. L., Palagin, D., Ranocchiari, M. & Van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Jin, Z. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 367, 193–197 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Li, X., Xie, J., Rao, H., Wang, C. & Tang, J. Platinum- and CuOx-decorated TiO2 photocatalyst for oxidative coupling of methane to C2 hydrocarbons in a flow reactor. Angew. Chem. Int. Ed. 59, 19702–19707 (2020).

    Article  CAS  Google Scholar 

  6. Yu, X. et al. Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. Nat. Energy 5, 511–519 (2020).

    Article  CAS  Google Scholar 

  7. Morejudo, S. H. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Hu, A., Guo, J.-J., Pan, H. & Zuo, Z. Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis. Science 361, 668–672 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Nikolaidis, P. & Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 67, 597–611 (2017).

    Article  CAS  Google Scholar 

  10. Kannah, R. Y. et al. Techno-economic assessment of various hydrogen production methods—a review. Bioresour. Technol. 319, 124175 (2021).

    Article  Google Scholar 

  11. Schulz, H. Short history and present trends of Fischer–Tropsch synthesis. Appl. Catal. A 186, 3–12 (1999).

    Article  CAS  Google Scholar 

  12. Dry, M. E. The Fischer–Tropsch process: 1950–2000. Catal. Today 71, 227–241 (2002).

    Article  CAS  Google Scholar 

  13. Jiao, F. et al. Disentangling the activity–selectivity trade-off in catalytic conversion of syngas to light olefins. Science 380, 727–730 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Van Hook, J. P. Methane–steam reforming. Catal. Rev. 21, 1–51 (1980).

    Article  Google Scholar 

  15. Meng, X. et al. Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis. Chem 5, 2296–2325 (2019).

    Article  CAS  Google Scholar 

  16. Li, Q., Ouyang, Y., Li, H., Wang, L. & Zeng, J. Photocatalytic conversion of methane: recent advancements and prospects. Angew. Chem. Int. Ed. 61, e202108069 (2022).

    Article  CAS  Google Scholar 

  17. Li, X., Wang, C. & Tang, J. Methane transformation by photocatalysis. Nat. Rev. Mater. 7, 617–632 (2022).

    Article  CAS  Google Scholar 

  18. Yoshida, H., Kato, S., Hirao, K., Nishimoto, J.-I. & Hattori, T. Photocatalytic steam reforming of methane over platinum-loaded semiconductors for hydrogen production. Chem. Lett. 36, 430–431 (2007).

    Article  CAS  Google Scholar 

  19. Shimura, K. et al. Photocatalytic steam reforming of methane over sodium tantalate. J. Phys. Chem. C 114, 3493–3503 (2010).

    Article  CAS  Google Scholar 

  20. Shimura, K., Kawai, H., Yoshida, T. & Yoshida, H. Bifunctional rhodium cocatalysts for photocatalytic steam reforming of methane over alkaline titanate. ACS Catal. 2, 2126–2134 (2012).

    Article  CAS  Google Scholar 

  21. Yamamoto, A., Mizuba, S., Saeki, Y. & Yoshida, H. Platinum loaded sodium tantalate photocatalysts prepared by a flux method for photocatalytic steam reforming of methane. Appl. Catal. A 521, 125–132 (2016).

    Article  CAS  Google Scholar 

  22. Song, H. et al. Visible-light-mediated methane activation for steam methane reforming under mild conditions: a case study of Rh/TiO2 catalysts. ACS Catal. 8, 7556–7565 (2018).

    Article  CAS  Google Scholar 

  23. Han, B., Wei, W., Li, M., Sun, K. & Hu, Y. H. A thermo-photo hybrid process for steam reforming of methane: highly efficient visible light photocatalysis. Chem. Commun. 55, 7816–7819 (2019).

    Article  CAS  Google Scholar 

  24. Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Aslam, U., Chavez, S. & Linic, S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. 12, 1000–1005 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Robatjazi, H., Yuan, L., Yuan, Y. & Halas, N. J. in Emerging Trends in Chemical Applications of Lasers Vol. 1398, 363–387 (ACS Symposium Series, American Chemical Society, 2021).

  28. Mukherjee, S. et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 136, 64–67 (2013).

    Article  PubMed  Google Scholar 

  29. Lou, M. et al. Direct H2S decomposition by plasmonic photocatalysis: efficient remediation plus sustainable hydrogen production. ACS Energy Lett. 7, 3666–3674 (2022).

    Article  CAS  Google Scholar 

  30. Contreras, E. et al. Plasmon-assisted ammonia electrosynthesis. J. Am. Chem. Soc. 144, 10743–10751 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Devasia, D., Wilson, A. J., Heo, J., Mohan, V. & Jain, P. K. A rich catalog of C–C bonded species formed in CO2 reduction on a plasmonic photocatalyst. Nat. Commun. 12, 2612 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marimuthu, A., Zhang, J. & Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339, 1590–1593 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Zhou, L. et al. Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation. Nano Lett. 16, 1478–1484 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Swearer, D. F. et al. Heterometallic antenna–reactor complexes for photocatalysis. Proc. Natl Acad. Sci. USA 113, 8916–8920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sytwu, K. et al. Driving energetically unfavorable dehydrogenation dynamics with plasmonics. Science 371, 280–283 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Halas, N. J. et al. Multicomponent plasmonic photocatalysts consisting of a plasmonic antenna and a reactive catalytic surface: the antenna–reactor effect. US patent US10766024B2 (2020).

  38. Yuan, Y. et al. Earth-abundant photocatalyst for H2 generation from NH3 with light-emitting diode illumination. Science 378, 889–893 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Zhou, L. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362, 69–72 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Zhou, L. et al. Light-driven methane dry reforming with single atomic site antenna–reactor plasmonic photocatalysts. Nat. Energy 5, 61–70 (2020).

    Article  CAS  Google Scholar 

  41. Robatjazi, H. et al. Plasmon-induced selective carbon dioxide conversion on Earth-abundant aluminum–cuprous oxide antenna–reactor nanoparticles. Nat. Commun. 8, 27 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Robatjazi, H. et al. Plasmon-driven carbon–fluorine (C(sp3)–F)) bond activation with mechanistic insights into hot-carrier-mediated pathways. Nat. Catal. 3, 564–573 (2020).

    Article  CAS  Google Scholar 

  43. Zhou, L. et al. Hot carrier multiplication in plasmonic photocatalysis. Proc. Natl Acad. Sci. USA 118, e2022109118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jones, G. et al. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. J. Catal. 259, 147–160 (2008).

    Article  CAS  Google Scholar 

  45. Besenbacher, F. et al. Design of a surface alloy catalyst for steam reforming. Science 279, 1913–1915 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Marcinkowski, M. D. et al. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat. Chem. 10, 325–332 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Hannagan, R. T. et al. First-principles design of a single-atom-alloy propane dehydrogenation catalyst. Science 372, 1444–1447 (2021).

    Article  CAS  Google Scholar 

  48. Behrens, M. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893–897 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Behrens, M. Coprecipitation: an excellent tool for the synthesis of supported metal catalysts—from the understanding of the well known recipes to new materials. Catal. Today 246, 46–54 (2015).

    Article  CAS  Google Scholar 

  50. Boudart, M. Turnover rates in heterogeneous catalysis. Chem. Rev. 95, 661–666 (1995).

    Article  CAS  Google Scholar 

  51. Brown, A. M., Sundararaman, R., Narang, P., Goddard, W. A. & Atwater, H. A. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano 10, 957–966 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Zhou, L. et al. Response to comment on “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis”. Science 364, eaaw9545 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Robatjazi, H. et al. Reply to: Distinguishing thermal from non-thermal contributions to plasmonic hydrodefluorination. Nat. Catal. 5, 247–250 (2022).

    Article  Google Scholar 

  54. Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Linic, S., Aslam, U., Boerigter, C. & Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14, 567–576 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Lindstrom, C. D. & Zhu, X. Y. Photoinduced electron transfer at molecule–metal interfaces. Chem. Rev. 106, 4281–4300 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Kim, K. H., Watanabe, K., Mulugeta, D., Freund, H.-J. & Menzel, D. Enhanced photoinduced desorption from metal nanoparticles by photoexcitation of confined hot electrons using femtosecond laser pulses. Phys. Rev. Lett. 107, 047401 (2011).

    Article  PubMed  Google Scholar 

  58. Seemala, B. et al. Plasmon-mediated catalytic O2 dissociation on Ag nanostructures: hot electrons or near fields? ACS Energy Lett. 4, 1803–1809 (2019).

    Article  CAS  Google Scholar 

  59. Stephens, R. E. & Malitson, I. H. Index of refraction of magnesium oxide. J. Res. Nat. Bur. Stand. 49, 249–252 (1952).

    Article  CAS  Google Scholar 

  60. Edward, D. P. Handbook of Optical Constants of Solids (Academic Press, 1998).

  61. Lindsay, A. L. & Bromley, L. A. Thermal conductivity of gas mixtures. Ind. Eng. Chem. 42, 1508–1511 (1950).

    Article  CAS  Google Scholar 

  62. Touloukian, Y. S., Liley, P. E. & Saxena, S. C. Thermophysical Properties of Matter—the TPRC Data Series Vol. 3 (IFI/Plenum, 1970).

  63. Touloukian, Y. S., Saxena, S. C. & Hestermans, P. Thermophysical Properties of Matter—the TPRC Data Series Vol. 11 (IFI/Plenum, 1975).

  64. Crane, C. Flow of Fluids Through Valves, Fittings, and Pipe (Crane Company, 1988).

  65. Sundararaman, R. et al. JDFTx: software for joint density-functional theory. SoftwareX 6, 278–284 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yuan, Y. et al. Steam methane reforming using a regenerable antenna-reactor plasmonic photocatalyst. Zenodo https://doi.org/10.5281/zenodo.13377300 (2024).

Download references

Acknowledgements

This article is based on work supported by the Robert A. Welch Foundation under grants C-1220 (to N.J.H.) and C-1222 (to P.N.) and by the Air Force Office of Scientific Research via the Department of Defense Multidisciplinary University Research Initiative under AFOSR Award number FA9550-15-1-0022. We acknowledge B. Chen from the Shared Equipment Authority at Rice University for providing valuable insights and assistance with processing the XPS data.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y., P.N. and N.J.H. initiated the project. Y.Y. developed the photocatalyst, performed the characterization, studied the catalysis and analysed the data. J.Z. performed the theoretical simulations. A.B. performed the scanning transmission electron microscopy. H.R. helped to interpret the data. P.N. and N.J.H. supervised the research. All authors contributed to preparation of the manuscript.

Corresponding authors

Correspondence to Peter Nordlander or Naomi J. Halas.

Ethics declarations

Competing interests

The antenna–reactor concept is protected under US patents US10766024B2 and US11958043B2, with additional coverage pending in published US patent application US20210023541A1. The antenna–reactor concept is also described in the international patent application WO 2018/231398 A2. Syzygy Plasmonics owns several patents relating to the photoreactor platform. N.J.H. and P.N. are co-founders of Syzygy Plasmonics. N.J.H., P.N. and H.R. have interest in Syzygy Plasmonics and hold equity in the company. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Jennifer Dionne, Hisao Yoshida and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note 1 and Figs. 1–10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Zhou, J., Bayles, A. et al. Steam methane reforming using a regenerable antenna–reactor plasmonic photocatalyst. Nat Catal 7, 1339–1349 (2024). https://doi.org/10.1038/s41929-024-01248-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-024-01248-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing