Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering living cells with polymers for recyclable photoenzymatic catalysis

Abstract

Engineering cell membranes for catalysis is challenging due to their inherent complexity. Here we introduce a polymeric strategy to overcome these challenges by chemically modifying cell membranes with catalytic polymers, enabling robust, recyclable and photoenzymatic catalysis. Through a one-step in situ atom transfer radical polymerization on living Escherichia coli cells, polymers are generated to protect the cells from environmental stressors while facilitating chemoenzymatic synthesis by integrating catalytic polymers with intracellular enzymes. As a proof of concept, a photoenzymatic cascade with an anthraquinone-based polymer and benzaldehyde lyase is demonstrated, converting benzyl alcohol into benzoin and achieving bioconversion yields that are 15 times higher than controls. Additionally, cells serve as large biological scaffolds for polymers, enabling recycling of macromolecular catalysts. A recyclable chemoenzymatic system incorporating an organometallic polymer with intracellular enzymes is also presented. Our versatile, straightforward approach offers a technology platform for engineering cell membranes for cascade synthesis, with broad implications for synthetic chemistry, polymer chemistry and biotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication of polymer-grafted cells and their applications in chemoenzymatic cascades.
Fig. 2: Characterization of grafted polymers and their distribution on cell surfaces.
Fig. 3: Viability and proliferation investigations of polymer-grafted E. coli cells.
Fig. 4: Compatibility evaluation of photo- and biocatalysts in polymer-grafted E. coli cells.
Fig. 5: Polymeric protection against external stress environment.
Fig. 6: Photoenzymatic cascade of polymer-grafted E. coli cells.
Fig. 7: Chemoenzymatic cascade studies of polymer-grafted E. coli cells.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available in the Article and the Supplementary Information or are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Hothorn, M. et al. Catalytic core of a membrane-associated eukaryotic polyphosphate polymerase. Science 324, 513–516 (2009).

    CAS  PubMed  Google Scholar 

  2. Suladze, S., Cinar, S., Sperlich, B. & Winter, R. Pressure modulation of the enzymatic activity of phospholipase A2, a putative membrane-associated pressure sensor. J. Am. Chem. Soc. 137, 12588–12596 (2015).

    CAS  PubMed  Google Scholar 

  3. Hendrickx, A., Budzik, J., Young, S. & Schneewind, O. Architects at the bacterial surface—sortases and the assembly of pili with isopeptide bonds. Nat. Rev. Microbiol. 9, 166–176 (2011).

    CAS  PubMed  Google Scholar 

  4. Hussain, M. S., Wang, Q. Z. & Viola, R. E. Engineering of a critical membrane-anchored enzyme for high solubility and catalytic activity. Arch. Biochem. Biophys. 703, 108870 (2021).

    CAS  PubMed  Google Scholar 

  5. Mu, J. et al. A small-molecule FRET reporter for the real-time visualization of cell-surface proteolytic enzyme functions. Angew. Chem. Int. Ed. 53, 14357–14362 (2014).

    CAS  Google Scholar 

  6. Thomas, G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat. Rev. Mol. Cell Biol. 3, 753–766 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Seidah, N. G. & Prat, A. The biology and therapeutic targeting of the proprotein convertases. Nat. Rev. Drug Discov. 11, 367–383 (2012).

    CAS  PubMed  Google Scholar 

  8. Lai, X., Wichers, H. J., S, L. M. & Dijkstra, B. W. Structure of human tyrosinase related protein 1 reveals a binuclear zinc active site important for melanogenesis. Angew. Chem. Int. Ed. 56, 9812–9815 (2017).

    CAS  Google Scholar 

  9. Grodd, W., Krägeloh-Mann, I., Petersen, D., Trefz, F. K. & Harzer, K. In vivo assessment of N-acetylaspartate in brain in spongy degeneration (Canavan’s disease) by proton spectroscopy. Lancet 336, 437–438 (1990).

    CAS  PubMed  Google Scholar 

  10. Bohl, H. O., Shi, K., Lee, J. K. & Aihara, H. Crystal structure of lipid A disaccharide synthase LpxB from Escherichia coli. Nat. Commun. 9, 377 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. Gómez, M. S. et al. The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde dehydrogenase (ADHa). Int. J. Mol. Sci. 16, 1293–1311 (2015).

    Google Scholar 

  12. Yakushi, T. & Matsushita, K. Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Appl. Microbiol. Biotechnol. 86, 1257–1265 (2010).

    CAS  PubMed  Google Scholar 

  13. Yang, H. et al. Molecular biology: fantastic toolkits to improve knowledge and application of acetic acid bacteria. Biotechnol. Adv. 58, 107911 (2022).

    CAS  PubMed  Google Scholar 

  14. Fan, L. H., Zhang, Z. J., Yu, X. Y., Xue, Y. X. & Tan, T. W. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc. Natl Acad. Sci. USA 109, 13260–13265 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tanaka, T. & Kondo, A. Cell surface engineering of industrial microorganisms for biorefining applications. Biotechnol. Adv. 33, 1403–1411 (2015).

    CAS  PubMed  Google Scholar 

  16. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    CAS  Google Scholar 

  17. Lee, S. Y., Choi, J. H. & Xu, Z. Microbial cell-surface display. Trends Biotechnol. 21, 45–52 (2003).

    CAS  PubMed  Google Scholar 

  18. Smith, G. P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).

    CAS  PubMed  Google Scholar 

  19. Charbit, A., Boulain, J. C., Ryter, A. & Hofnung, M. Probing the topology of a bacterial membrane protein by genetic insertion of a foreign epitope; expression at the cell surface. EMBO J. 5, 3029–3037 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Richins, R. D., Kaneva, I., Mulchandani, A. & Chen, W. Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat. Biotechnol. 15, 984–987 (1997).

    CAS  PubMed  Google Scholar 

  21. Jin, Z. et al. Combined utilization of lipase-displaying Pichia pastoris whole-cell biocatalysts to improve biodiesel production in co-solvent media. Bioresour. Technol. 130, 102–109 (2013).

    CAS  PubMed  Google Scholar 

  22. Boder, E. T. & Wittrup, K. D. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15, 553–557 (1997).

    CAS  PubMed  Google Scholar 

  23. Szponarski, M., Schwizer, F., Ward, T. R. & Gademann, K. On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme. Commun. Chem. 1, 84 (2018).

    Google Scholar 

  24. Schmid, A. et al. Industrial biocatalysis today and tomorrow. Nature 409, 258–268 (2001).

    CAS  PubMed  Google Scholar 

  25. Stepankova, V. et al. Strategies for stabilization of enzymes in organic solvents. ACS Catal. 3, 2823–2836 (2013).

    CAS  Google Scholar 

  26. Zhang, N., Sun, Z. & Wu, C. Artificial enzymes combining proteins with proline polymers for asymmetric aldol reactions in water. ACS Catal. 12, 4777–4783 (2022).

    CAS  Google Scholar 

  27. Chi, Y., Scroggins, S. T., Boz, E. & Fréchet, J. M. J. Control of aldol reaction pathways of enolizable aldehydes in an aqueous environment with a hyperbranched polymeric catalyst. J. Am. Chem. Soc. 130, 17287–17289 (2008).

    CAS  PubMed  Google Scholar 

  28. Liu, F., Kong, W., Qi, C., Zhu, L. & Xiao, F. S. Design and synthesis of mesoporous polymer-based solid acid catalysts with excellent hydrophobicity and extraordinary catalytic activity. ACS Catal. 2, 565–572 (2012).

    CAS  Google Scholar 

  29. Huang, K., Zhang, J. Y., Liu, F. & Dai, S. Synthesis of porous polymeric catalysts for the conversion of carbon dioxide. ACS Catal. 8, 9079–9102 (2018).

    CAS  Google Scholar 

  30. Sun, Z., Hübner, R., Li, J. & Wu, C. Artificially sporulated Escherichia coli cells as a robust cell factory for interfacial biocatalysis. Nat. Commun. 13, 3142 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Park, J. H. et al. A cytoprotective and degradable metal–polyphenol nanoshell for single-cell encapsulation. Angew. Chem. Int. Ed. 53, 12420–12425 (2014).

    CAS  Google Scholar 

  32. Kim, J. Y. et al. Cytocompatible polymer grafting from individual living cells by atom-transfer radical polymerization. Angew. Chem. Int. Ed. 55, 15306–15309 (2016).

    CAS  Google Scholar 

  33. Magennis, E. P. et al. Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling. Nat. Mater. 13, 748–755 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Niu, J. et al. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nat. Chem. 9, 537–545 (2017).

    CAS  PubMed  Google Scholar 

  35. Song, R. B. et al. Living and conducting: coating individual bacterial cells with in situ formed polypyrrole. Angew. Chem. Int. Ed. 56, 10516–10520 (2017).

    CAS  Google Scholar 

  36. Laskar, P., Varghese, O. P. & Shastri, V. P. Advances in intracellular and on-surface polymerization in living cells: implications for nanobiomedicines. Adv. Nanobiomed. Res. 3, 2200174 (2023).

    CAS  Google Scholar 

  37. Pan, J. et al. A single-cell nanocoating of probiotics for enhanced amelioration of antibiotic-associated diarrhea. Nat. Commun. 13, 2117 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Smith, P. N., Mao, L., Sinha, K. & Russell, A. J. Organophosphate detoxification by membrane-engineered red blood cells. Acta Biomater. 124, 270–281 (2021).

    CAS  PubMed  Google Scholar 

  39. Safarova, Y. et al. Mesenchymal stem cells coated with synthetic bone-targeting polymers enhance osteoporotic bone fracture regeneration. Bioengineering 7, 125 (2020).

    CAS  Google Scholar 

  40. Clafshenkel, W. P. et al. The effect of covalently-attached ATRP-synthesized polymers on membrane stability and cytoprotection in human erythrocytes. PLoS One 11, e0157641 (2016).

    PubMed  PubMed Central  Google Scholar 

  41. D’Souza, S. et al. Engineering of cell membranes with a bisphosphonate-containing polymer using ATRP synthesis for bone targeting. Biomaterials 35, 9447–9458 (2014).

    PubMed  Google Scholar 

  42. Teramura, Y. & Iwata, H. Cell surface modification with polymers for biomedical studies. Soft Matter 6, 1081–1091 (2010).

    CAS  Google Scholar 

  43. Teramura, Y., Kaneda, Y. & Iwata, H. Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)-lipids in the cell membrane. Biomaterials 28, 4818–4825 (2007).

    CAS  PubMed  Google Scholar 

  44. Sun, Z., Glebe, U., Charan, H., Böker, A. & Wu, C. Enzyme–polymer conjugates as robust pickering interfacial biocatalysts for efficient biotransformations and one-pot cascade reactions. Angew. Chem. Int. Ed. 57, 13810–13814 (2018).

    CAS  Google Scholar 

  45. Wang, J. S. & Matyjaszewski, K. Controlled/‘living’ radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 117, 5614–5615 (1995).

    CAS  Google Scholar 

  46. Matyjaszewski, K. & Tsarevsky, N. V. Macromolecular engineering by atom transfer radical polymerization. J. Am. Chem. Soc. 136, 6513–6533 (2014).

    CAS  PubMed  Google Scholar 

  47. Vargason, A. M., Santhosh, S. & Anselmo, A. C. Surface modifications for improved delivery and function of therapeutic bacteria. Small 16, 2001705 (2020).

    CAS  Google Scholar 

  48. Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. Sahl, S. J., Hell, S. W. & Jakobs, S. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017).

    CAS  PubMed  Google Scholar 

  50. Kraus, F. et al. Quantitative 3D structured illumination microscopy of nuclear structures. Nat. Protoc. 12, 1011–1028 (2017).

    CAS  PubMed  Google Scholar 

  51. Boulos, L., Prévost, M., Barbeau, B., Coallier, J. & Desjardins, R. LIVE/DEAD BacLight: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J. Microbiol. Methods 37, 77–86 (1999).

    CAS  PubMed  Google Scholar 

  52. Köhler, V. et al. Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes. Nat. Chem. 5, 93–99 (2013).

    PubMed  Google Scholar 

  53. Zhang, W., Gacs, J., Isabel, W. C. E. & Hollmann, F. Selective photooxidation reactions using water-soluble anthraquinone photocatalysts. ChemCatChem 9, 3821–3826 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Imlay, J. A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 11, 443–454 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the Independent Research Fund Denmark within the framework of the Sapere Aude leader programme (9064-00062B, C.W.). We also thank the Novo Nordisk Foundation (NNF21OC0071661, C.W.), the Carlsberg Foundation (CF22-1008, C.W.), the S.C. VAN foundation (J.N.) and the National Key R&D Program of China (2023YFA0913600, Z.S.) for their generous funding. We are grateful to Enzymicals AG for providing the plasmid of ATA, to A. Worbs for performing SEM and to C. He (Sichuan University) for TEM and EDXS measurements. We would like to acknowledge the assistance of the core facility BioSupraMol (FU Berlin), C. Hudziak (FU Berlin) for GPC measurement and T. Frickmann and D. E. Canfield (University of Southern Denmark) for ICP-MS analysis. The use of the HZDR Ion Beam Center TEM facilities is acknowledged. Cryo-TEM image acquisition and image analyses were performed at the Institute of Chemistry and Biochemistry, Electron Microscopy Research Center (FU Berlin). Fluorescence image acquisition and image analyses were performed at the Danish Molecular Biomedical Imaging Center (DaMBIC, University of Southern Denmark), supported by the Novo Nordisk Foundation (NNF18SA0032928, M.F.E.).

Author information

Authors and Affiliations

Authors

Contributions

C.W. conceptualized and supervised the project. J.N. performed the experiments. Z.S. provided experimental guidance and scientific discussion. R.H. performed SEM-based data analysis. M.F.E. conducted SIM and STED measurements. M.D. performed cryo-TEM and relevant data analysis. H.K. provided guidance and supervision related to the microbiological work. C.W., J.N. and Z.S. wrote the paper.

Corresponding author

Correspondence to Changzhu Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Nico Bruns, Florian Rudroff and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Table 1, Figs. 1–37 and Notes 1 and 2.

Reporting Summary

Supplementary Data

Raw NMR data.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, J., Sun, Z., Hübner, R. et al. Engineering living cells with polymers for recyclable photoenzymatic catalysis. Nat Catal 7, 1404–1416 (2024). https://doi.org/10.1038/s41929-024-01259-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-024-01259-5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology