Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coupled cation–electron transfer at the Pt(111)/perfluoro-sulfonic acid ionomer interface and its impact on the oxygen reduction reaction kinetics

Abstract

Electrochemical interfaces between polymer electrolytes and electrodes are central to electrochemical devices in the global transition towards renewable energy. Here we show that the adsorption and desorption of sulfonates in Nafion on Pt(111) involve distinct elementary steps, with the latter proceeding through a coupled cation–electron transfer. Adsorbed sulfonates not only block a fraction of surface Pt sites but, more importantly, generate two additional types of surface adsorbate, OHNafion and ONafion, which exhibit distinct kinetic properties from adsorbed OH and O on bare Pt(111), respectively. The impact of the adsorption of sulfonate groups in Nafion on the activity of the oxygen reduction reaction (ORR) on Pt cannot be rationalized by existing thermodynamic descriptors. The reduced ORR activity on the Nafion-covered Pt(111) is caused by the kinetically hindered *O→*OH conversion and *OH reduction on sites close to adsorbed sulfonates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adsorption and desorption of sulfonate groups on Nafion-covered Pt(111).
Fig. 2: Coupled cation–electron transfer in sulfonate desorption.
Fig. 3: Isotopic labelling experiments.
Fig. 4: Non-Nernstian shift behaviour of the sulfonate adsorption peak.
Fig. 5: Identification of OHNafion and ONafion species.
Fig. 6: Kinetic properties of OHnormal and OHNafion.
Fig. 7: Impact of Nafion on ORR kinetics.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Jacobse, L., Huang, Y.-F., Koper, M. T. M. & Rost, M. J. Correlation of surface site formation to nanoisland growth in the electrochemical roughening of Pt(111). Nat. Mater. 17, 277–282 (2018).

    Article  PubMed  CAS  Google Scholar 

  2. Ojha, K., Arulmozhi, N., Aranzales, D. & Koper, M. T. M. Double layer at the Pt(111)-aqueous electrolyte interface: potential of zero charge and anomalous Gouy-Chapman screening. Angew. Chem. Int. Ed. 59, 711–715 (2020).

    Article  CAS  Google Scholar 

  3. Rizo, R. et al. Investigating the presence of adsorbed species on Pt steps at low potentials. Nat. Commun. 13, 2550 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. McCrum, I. T. & Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 5, 891–899 (2020).

    Article  CAS  Google Scholar 

  5. Luo, M. & Guo, S. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2, 17059 (2017).

    Article  CAS  Google Scholar 

  6. Zhu, J., Hu, L., Zhao, P., Lee, L. Y. S. & Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 120, 851–918 (2020).

    Article  PubMed  CAS  Google Scholar 

  7. Li, Y. et al. Modifying the electrocatalyst-ionomer interface via sulfonated poly(ionic liquid) block copolymers to enable high-performance polymer electrolyte fuel cells. ACS Energy Lett. 5, 1726–1731 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lan, C. et al. Research progress of proton-exchange membrane fuel cell cathode nonnoble metal M-Nx/C-type oxygen reduction catalysts. Acta Phys. Chim. Sin. 39, 2210036 (2022).

    Article  Google Scholar 

  9. Lazaridis, T., Stühmeier, B. M., Gasteiger, H. A. & El-Sayed, H. A. Capabilities and limitations of rotating disk electrodes versus membrane electrode assemblies in the investigation of electrocatalysts. Nat. Catal. 5, 363–373 (2022).

    Article  CAS  Google Scholar 

  10. Peng, X. et al. Using operando techniques to understand and design high performance and stable alkaline membrane fuel cells. Nat. Commun. 11, 3561 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wang, Q., Cha, C. S., Lu, J. & Zhuang, L. The electrochemistry of ‘solid/water’ interfaces involved in PEM-H2O reactors: Part I. The ‘Pt/water’ interfaces. Phys. Chem. Chem. Phys. 11, 679–687 (2009).

    Article  PubMed  Google Scholar 

  12. Wang, Y.-C. et al. Identification of the active triple-phase boundary of a non-Pt catalyst layer in fuel cells. Sci. Adv. 8, eadd8873 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Li, Y., Intikhab, S., Malkani, A., Xu, B. & Snyder, J. Ionic liquid additives for the mitigation of Nafion specific adsorption on platinum. ACS Catal. 10, 7691–7698 (2020).

    Article  CAS  Google Scholar 

  14. Kodama, K. et al. Effect of the side-chain structure of perfluoro-sulfonic acid ionomers on the oxygen reduction reaction on the surface of Pt. ACS Catal. 8, 694–700 (2017).

    Article  Google Scholar 

  15. Xu, Y. et al. Boosting oxygen reduction at Pt(111)|proton exchange ionomer interfaces through tuning the microenvironment water activity. ACS Appl. Mater. Interfaces 16, 4540–4549 (2024).

    PubMed  Google Scholar 

  16. Subbaraman, R., Strmcnik, D., Stamenkovic, V. & Markovic, N. M. Three phase interfaces at electrified metal-solid electrolyte systems 1. Study of the Pt(hkl)-Nafion interface. J. Phys. Chem. C 114, 8414–8422 (2010).

    Article  CAS  Google Scholar 

  17. Kusoglu, A. & Weber, A. Z. New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 117, 987–1104 (2017).

    Article  PubMed  CAS  Google Scholar 

  18. Ahmed, M. et al. Unprecedented structural sensitivity toward average terrace width: Nafion adsorption at Pt{hkl} electrodes. J. Phys. Chem. C 115, 17020–17027 (2011).

    Article  CAS  Google Scholar 

  19. Kodama, K. & Motobayashi, K. Adsorption of ionomer and ionic liquid on model Pt catalysts for polymer electrolyte fuel cells. Electrochem. Sci. Adv. 3, e2100183 (2022).

    Article  Google Scholar 

  20. Climent, V., Gómez, R., Orts, J. M. & Feliu, J. M. Thermodynamic analysis of the temperature dependence of OH adsorption on Pt(111) and Pt(100) electrodes in acidic media in the absence of specific anion adsorption. J. Phys. Chem. B 110, 11344–11351 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. Berna, A., Climent, V. & Feliu, J. New understanding of the nature of OH adsorption on Pt(111) electrodes. Electrochem. Commun. 9, 2789–2794 (2007).

    Article  CAS  Google Scholar 

  22. Herrero, E., Mostany, J., Feliu, J. M. & Lipkowski, J. Thermodynamic studies of anion adsorption at the Pt(111) electrode surface in sulfuric acid solutions. J. Electroanal. Chem. 534, 79–89 (2002).

    Article  CAS  Google Scholar 

  23. Koper, M. T. M. & Lukkien, J. J. Modeling the butterfly: the voltammetry of (√3 × √3)R30° and p(2 × 2) overlayers on (111) electrodes. J. Electroanal. Chem. 485, 161–165 (2000).

    Article  CAS  Google Scholar 

  24. Koper, M. T. M. & Lukkien, J. J. Modeling the butterfly: influence of lateral interactions and adsorption geometry on the voltammetry at (111) and (100) electrodes. Surf. Sci. 498, 105–115 (2002).

    Article  CAS  Google Scholar 

  25. Kolics, A. & Wieckowski, A. Adsorption of bisulfate and sulfate anions on a Pt(111) electrode. J. Phys. Chem. B 105, 2588–2595 (2001).

    Article  CAS  Google Scholar 

  26. Zuo, X. Q. et al. pH effect on acetate adsorption at Pt(111) electrode. Electrochem. Commun. 89, 6–9 (2018).

    Article  CAS  Google Scholar 

  27. Cui, H., Xu, Y.-J., Pan, S.-Y. & Chen, Y.-X. Effects of solution pH and preparation conditions on the electrochemical behaviors of Pt(111)-Nafion interface. Electrochim. Acta 475, 143652 (2024).

    Article  CAS  Google Scholar 

  28. Naegeli, R., Redepenning, J. & Anson, F. C. Influence of supporting electrolyte concentration and composition on formal potentials and entropies of redox couples incorporated in Nafion coatings on electrodes. J. Phys. Chem. 90, 6227–6232 (2002).

    Article  Google Scholar 

  29. Yang, Y. et al. Inverse kinetic isotope effects in the oxygen reduction reaction at platinum single crystals. Nat. Chem. 15, 271–277 (2022).

    Article  PubMed  Google Scholar 

  30. Funtikov, A. M., Stimming, U. & Vogel, R. Anion adsorption from sulfuric acid solutions on Pt(111) single crystal electrodes. J. Electroanal. Chem. 428, 147–153 (1997).

    Article  CAS  Google Scholar 

  31. Gisbert, R., García, G. & Koper, M. T. M. Adsorption of phosphate species on poly-oriented Pt and Pt(111) electrodes over a wide range of pH. Electrochim. Acta 55, 7961–7968 (2010).

    Article  CAS  Google Scholar 

  32. Luo, M. & Koper, M. T. M. A kinetic descriptor for the electrolyte effect on the oxygen reduction kinetics on Pt(111). Nat. Catal. 5, 615–623 (2022).

    Article  CAS  Google Scholar 

  33. Gómez-Marín, A. M., Clavilier, J. & Feliu, J. M. Sequential Pt(111) oxide formation in perchloric acid: an electrochemical study of surface species inter-conversion. J. Electroanal. Chem. 688, 360–370 (2013).

    Article  Google Scholar 

  34. Briega-Martos, V., Herrero, E. & Feliu, J. M. Effect of pH and water structure on the oxygen reduction reaction on platinum electrodes. Electrochim. Acta 241, 497–509 (2017).

    Article  CAS  Google Scholar 

  35. Shinozaki, K., Morimoto, Y., Pivovar, B. S. & Kocha, S. S. Suppression of oxygen reduction reaction activity on Pt-based electrocatalysts from ionomer incorporation. J. Power Sources 325, 745–751 (2016).

    Article  CAS  Google Scholar 

  36. Jomori, S., Komatsubara, K., Nonoyama, N., Kato, M. & Yoshida, T. An experimental study of the effects of operational history on activity changes in a PEMFC. J. Electrochem. Soc. 160, F1067–F1073 (2013).

    Article  CAS  Google Scholar 

  37. Subbaraman, R., Strmcnik, D., Paulikas, A. P., Stamenkovic, V. R. & Markovic, N. M. Oxygen reduction reaction at three‐phase interfaces. ChemPhysChem 11, 2825–2833 (2010).

    Article  PubMed  CAS  Google Scholar 

  38. Shinozaki, K., Zack, J. W., Pylypenko, S., Pivovar, B. S. & Kocha, S. S. Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique. J. Electrochem. Soc. 162, F1384–F1396 (2015).

    Article  CAS  Google Scholar 

  39. Park, Y.-C., Kakinuma, K., Uchida, H., Watanabe, M. & Uchida, M. Effects of short-side-chain perfluorosulfonic acid ionomers as binders on the performance of low Pt loading fuel cell cathodes. J. Power Sources 275, 384–391 (2015).

    Article  CAS  Google Scholar 

  40. Garsany, Y. et al. Improving PEMFC performance using short-side-chain low-equivalent-weight PFSA ionomer in the cathode catalyst layer. J. Electrochem. Soc. 165, F381–F391 (2018).

    Article  CAS  Google Scholar 

  41. Marković, N. M., Schmidt, T. J., Stamenković, V. & Ross, P. N. Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1, 105–116 (2001).

    Article  Google Scholar 

  42. Marković, N. M., Gasteiger, H. A., Grgur, B. N. & Ross, P. N. Oxygen reduction reaction on Pt(111): effects of bromide. J. Electroanal. Chem. 467, 157–163 (1999).

    Article  Google Scholar 

  43. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    Article  PubMed  CAS  Google Scholar 

  44. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009).

    Article  PubMed  CAS  Google Scholar 

  45. Stephens, I. E. L., Bondarenko, A. S., Grønbjerg, U., Rossmeisl, J. & Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 5, 6744–6762 (2012).

    Article  CAS  Google Scholar 

  46. Gu, Y., Xi, B., Zhang, H., Ma, Y. & Xiong, S. Activation of main-group Sb atomic sites for oxygen reduction catalysis. Angew. Chem. Int. Ed. 61, e202202200 (2022).

    Article  CAS  Google Scholar 

  47. Luo, M. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 574, 81–85 (2019).

    Article  PubMed  CAS  Google Scholar 

  48. Stamenkovic, V. R., Mun, B. S., Mayrhofer, K. J., Ross, P. N. & Markovic, N. M. Effect of surface composition on electronic structure, stability and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 128, 8813–8819 (2006).

    Article  PubMed  CAS  Google Scholar 

  49. Bandarenka, A. S., Hansen, H. A., Rossmeisl, J. & Stephens, I. E. L. Elucidating the activity of stepped Pt single crystals for oxygen reduction. Phys. Chem. Chem. Phys. 16, 13625–13629 (2014).

    Article  PubMed  CAS  Google Scholar 

  50. Casalongue, H. S. et al. Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode. Nat. Commun. 4, 2817 (2013).

    Article  Google Scholar 

  51. Wakisaka, M., Suzuki, H., Mitsui, S., Uchida, H. & Watanabe, M. Identification and quantification of oxygen species adsorbed on Pt(111) single-crystal and polycrystalline Pt electrodes by photoelectron spectroscopy. Langmuir 25, 1897–1900 (2009).

    Article  PubMed  CAS  Google Scholar 

  52. Drnec, J. et al. Initial stages of Pt(111) electrooxidation: dynamic and structural studies by surface X-ray diffraction. Electrochim. Acta 224, 220–227 (2017).

    Article  CAS  Google Scholar 

  53. Sakong, S. et al. Influence of local inhomogeneities and the electrochemical environment on the oxygen reduction reaction on Pt-based electrodes: a DFT study. J. Phys. Chem. C 124, 27604–27613 (2020).

    Article  CAS  Google Scholar 

  54. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  55. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  56. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  PubMed  CAS  Google Scholar 

  57. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  58. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  59. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  60. Cheng, T. et al. Mechanism and kinetics of the electrocatalytic reaction responsible for the high cost of hydrogen fuel cells. Phys. Chem. Chem. Phys. 19, 2666–2673 (2017).

    Article  PubMed  CAS  Google Scholar 

  61. Ye, Y. F. et al. Dramatic differences in carbon dioxide adsorption and initial steps of reduction between silver and copper. Nat. Commun. 10, 1875 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cheng, T., Xiao, H. & Goddard, W. A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl Acad. Sci. USA 114, 1795–1800 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Xiao, H., Cheng, T., Goddard, W. A. & Sundararaman, R. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111). J. Am. Chem. Soc. 138, 483–486 (2016).

    Article  PubMed  CAS  Google Scholar 

  64. Goldsmith, Z. K., Andrade, M. F. C. & Selloni, A. Effects of applied voltage on water at a gold electrode interface from ab initio molecular dynamics. Chem. Sci. 12, 5865–5873 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

  66. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  CAS  Google Scholar 

  67. Nosé, S. Constant temperature molecular dynamics methods. Prog. Theor. Phys. Suppl. 103, 1–46 (1991).

    Article  Google Scholar 

  68. Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (no. 2021YFA1501003). M.L. acknowledges the support of the National Natural Science Foundation of China under grant no. 22379002, and X.C. acknowledges the support of the National Natural Science Foundation of China under grant no. 22278002. We thank X. Chen from Beijing Institute of Technology for technical assistance and useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

K.Z., M.L. and B.X. conceived the idea and designed the experiments. K.Z. conducted the electrochemical measurements and in situ IR experiments. Y.Z. performed molecular dynamics simulations. X.C. conducted parts of the electrochemical measurements. K.Z., M.L., Y.Z. and B.X. analysed experimental and computational data, and co-wrote the paper, with input from all other co-authors.

Corresponding authors

Correspondence to Mingchuan Luo or Bingjun Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Chiyoung Jung, Kensaku Kodama and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22, Tables 1–3, Notes 1–5 and refs. 1–12.

Supplementary Data 1

Atomic coordinates of calculation

Source data

Source Data Fig. 1

Adsorption and desorption of sulfonate groups on Nafion-covered Pt(111).

Source Data Fig. 2

Coupled cation-electron transfer in the sulfonate desorption.

Source Data Fig. 3

Isotopic labelling experiments.

Source Data Fig. 4

Non-Nernstian shift behaviour of the sulfonate adsorption peak.

Source Data Fig. 5

Identification of OHNafion and ONafion species.

Source Data Fig. 6

Kinetic properties of OHnormal and OHNafion.

Source Data Fig. 7

Impact of Nafion on the ORR activities.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Luo, M., Zhang, Y. et al. Coupled cation–electron transfer at the Pt(111)/perfluoro-sulfonic acid ionomer interface and its impact on the oxygen reduction reaction kinetics. Nat Catal 8, 46–57 (2025). https://doi.org/10.1038/s41929-024-01279-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-024-01279-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing