Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrified synthesis of n-propanol using a dilute alloy catalyst

Abstract

N-propanol is an important industrial solvent but the current industrial routes for its production rely on fossil fuels and generate high carbon dioxide emissions. Replacing fossil processes with electrochemical systems powered using renewable energy offers one route to reduce the carbon intensity of n-propanol manufacture. The electrosynthesis of n-propanol via carbon monoxide electroreduction relies on the coupling of C1 and C2 intermediates, and these are preferentially stabilized on different sites. Here we pursued the synthesis of catalysts in which a high-oxygen-affinity metal (such as Sn in the best catalysts herein) is present in dilute quantities within a Cu matrix. The Sn–Cu catalyst is then formed into a catalyst/carbon/ionomer heterojunction architecture that reverses electro-osmotic drag to concentrate the n-propanol produced. We achieve n-propanol electrosynthesis from carbon monoxide with a Faradaic efficiency of 47 ± 3% and a concentration of 30 wt% at an energy efficiency of 24%. We report stable n-propanol electrosynthesis for 120 h in a membrane-electrode assembly electrolyser.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrosynthesis of n-propanol by using renewable energy.
Fig. 2: Design criteria and structure of the electrocatalyst.
Fig. 3: In situ ATR-SEIRAS studies.
Fig. 4: Performance of n-propanol production on the Sn–Cu atomically dilute alloy catalyst.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Leow, W. R. et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 368, 1228–1233 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Use of Energy Explained: Energy Use in Industry (US Energy Information Administration (EIA), 2019); www.eia.gov/energyexplained/use-of-energy/industry.php

  3. Achakulwisut, P. et al. Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions. Nat. Commun. 14, 5425 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Propanol Market Size, Share & Trends Analysis Report by Product by Application (N-propanol, Isopropyl Alcohol), by Region, and Segment Forecasts, 2023–2030 (Grand View Research, 2023); https://www.grandviewresearch.com/industry-analysis/propanol-market

  5. Lepore, A. W. et al. Catalytic dehydration of biomass derived 1-propanol to propene over M-ZSM-5 (M = H, V, Cu, or Zn). Ind. Eng. Chem. Res. 56, 4302–4308 (2017).

    Article  CAS  Google Scholar 

  6. Wang, X. et al. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag-Ru-Cu catalyst. Nat. Energy 7, 170–176 (2022).

    Article  Google Scholar 

  7. Klabunde, J., Bischoff, C. & Papa, A. J. Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, 2018).

  8. Motte, J. et al. Environmental performance assessment of a novel process concept for propanol production from widely available and wasted methane sources. Ind. Eng. Chem. Res. 61, 11071–11079 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gehrmann, S. & Tenhumberg, N. Production and use of sustainable C2-C4 alcohol – an industrial perspective. Chem. Ing. Tech. 92, 1444–1458 (2020).

    Article  CAS  Google Scholar 

  10. Nabil, S. K., McCoy, S. & Kibria, M. G. Comparative life cycle assessment of electrochemical upgrading of CO2 to fuels and feedstocks. Green Chem. 23, 867–880 (2021).

    Article  Google Scholar 

  11. Shin, H., Hansen, K. U. & Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 4, 911–919 (2021).

    Article  Google Scholar 

  12. Jeong, S. et al. Facet-defined dilute metal alloy nanorods for efficient electroreduction of CO2 to n-propanol. J. Am. Chem. Soc. 146, 4508–4520 (2024).

    Article  CAS  PubMed  Google Scholar 

  13. Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  CAS  Google Scholar 

  14. Ozden, A. et al. Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule 5, 706–719 (2021).

    Article  CAS  Google Scholar 

  15. Jouny, M., Hutchings, G. S. & Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019).

    Article  CAS  Google Scholar 

  16. Jin, J. et al. Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction. Nature 617, 724–729 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Zhu, P. & Wang, H. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nat. Catal. 4, 943–951 (2021).

    Article  CAS  Google Scholar 

  18. Pang, Y. et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nat. Catal. 2, 251–258 (2019).

    Article  CAS  Google Scholar 

  19. Niu, W. et al. Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion. Nat. Commun. 14, 4882 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pelayo Garcíade Arquer, F. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article  Google Scholar 

  21. Wang, X. et al. Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. Nat. Commun. 10, 5186 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Hori, Y., Takahashi, R., Yoshinami, Y. & Murata, A. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101, 7075–7081 (1997).

    Article  CAS  Google Scholar 

  24. Pablo-García, S. et al. Mechanistic routes toward C3 products in copper-catalysed CO2 electroreduction. Catal. Sci. Technol. 12, 409–417 (2022).

    Article  Google Scholar 

  25. Vasileff, A., Xu, C., Jiao, Y., Zheng, Y. & Qiao, S.-Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 4, 1809–1831 (2018).

    Article  CAS  Google Scholar 

  26. Kepp, K. P. A quantitative scale of oxophilicity and thiophilicity. Inorg. Chem. 55, 9461–9470 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    Article  CAS  Google Scholar 

  28. Hansen, H., Shi, C., Lausche, A., Peterson, A. & Nørskov, J. K. Bifunctional alloys for the electroreduction of CO2 and CO. Phys. Chem. Chem. Phys. 18, 9194–9201 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Guo, Y., Wang, M., Zhu, Q., Xiao, D. & Ma, D. Ensemble effect for single-atom, small cluster and nanoparticle catalysts. Nat. Catal. 5, 766–776 (2022).

    Article  CAS  Google Scholar 

  30. Hai, X. et al. Geminal-atom catalysis for cross-coupling. Nature 622, 754–760 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Millar, G. J., Rochester, C. H. & Waugh, K. C. An FTIR study of the adsorption of formic acid and formaldehyde on potassium-promoted Cu/SiO2 catalysts. J. Catal. 155, 52–58 (1995).

    Article  CAS  Google Scholar 

  32. Katayama, Y. et al. An in situ surface-enhanced infrared absorption spectroscopy study of electrochemical CO2 reduction: selectivity dependence on surface C-bound and O-bound reaction intermediates. J. Phys. Chem. C 123, 5951–5963 (2018).

    Article  Google Scholar 

  33. Popova, G. Y., Andrushkevich, T., Chesalov, Y. A. & Stoyanov, E. In situ FTIR study of the adsorption of formaldehyde, formic acid, and methyl formiate at the surface of TiO2 (anatase). Kinet. Catal. 41, 805–811 (2000).

    Article  CAS  Google Scholar 

  34. Liu, Y.-Y. et al. Insight into the effect of the d-orbital energy of copper ions in metal–organic frameworks on the selectivity of electroreduction of CO2 to CH4. ACS Catal. 12, 2749–2755 (2022).

    Article  Google Scholar 

  35. Li, X. et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 4, 690–699 (2019).

    Article  CAS  Google Scholar 

  36. Yao, K. et al. Mechanistic insights into OC–COH coupling in CO2 electroreduction on fragmented copper. J. Am. Chem. Soc. 144, 14005–14011 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Li, F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces. Nat. Catal. 3, 75–82 (2020).

    Article  CAS  Google Scholar 

  38. Gunathunge, C. M., Ovalle, V. J., Li, Y., Janik, M. J. & Waegele, M. M. Existence of an electrochemically inert CO population on Cu electrodes in alkaline pH. ACS Catal. 8, 7507–7516 (2018).

    Article  CAS  Google Scholar 

  39. Fielicke, A., Gruene, P., Meijer, G. & Rayner, D. M. The adsorption of CO on transition metal clusters: a case study of cluster surface chemistry. Surf. Sci. 603, 1427–1433 (2009).

    Article  CAS  Google Scholar 

  40. An, H. et al. Sub-second time-resolved surface-enhanced Raman spectroscopy reveals dynamic CO intermediates during electrochemical CO2 reduction on copper. Angew. Chem. Int. Ed. 60, 16576–16584 (2021).

    Article  CAS  Google Scholar 

  41. Li, H., Wei, P., Gao, D. & Wang, G. In situ Raman spectroscopy studies for electrochemical CO2 reduction over Cu catalysts. Curr. Opin. Green Sustain. Chem. 36, 100589 (2022).

    Article  Google Scholar 

  42. Wei, P. et al. Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis. Nat. Nanotechnol. 18, 299–306 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, N. et al. Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat 2, 12–16 (2021).

    Article  CAS  Google Scholar 

  44. Miao, R. K. et al. Electroosmotic flow steers neutral products and enables concentrated ethanol electroproduction from CO2. Joule 5, 2742–2753 (2021).

    Article  CAS  Google Scholar 

  45. Robb, A. et al. Concentrated ethanol electrosynthesis from CO2 via a porous hydrophobic adlayer. ACS Appl. Mater. Inter. 14, 4155–4162 (2022).

    Article  CAS  Google Scholar 

  46. Li, J. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9, 4614 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Luc, W., Rosen, J. & Jiao, F. An Ir-based anode for a practical CO2 electrolyzer. Catal. Today 288, 79–84 (2017).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  49. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  50. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  52. Blöchl, P. E., Jepsen, O. & Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 (1994).

    Article  Google Scholar 

  53. Grimme, S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  55. Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. Theoretical insights into a CO dimerization mechanismin CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge funding support from the Natural Sciences and Engineering Research Council (NSERC) of Canada. This research used synchrotron resources of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy, Office of Science by Argonne National Laboratory, and was supported by the US Department of Energy under contract no. DE-AC02-06CH11357 as well as by the Canadian Light Source and its funding partners. DFT calculations were performed on the Niagara supercomputer at the SciNet HPC Consortium. SciNet is funded by: the Canada Foundation for Innovation; the Government of Ontario; the Ontario Research Fund—Research Excellence and the University of Toronto. X.W. acknowledges the Zhejiang University Excellent Doctoral Dissertation Funding. W.N. acknowledges financial support from the Swiss National Science Foundation (SNSF) Postdoctoral Mobility Fellowship (grant no. P500PN_202906).

Author information

Authors and Affiliations

Authors

Contributions

E.H.S. and D.S. supervised the project. Y.C. conceived the idea, designed and conducted the experiments, and wrote the paper. X.W. carried out the experiments and contributed to data analysis and paper writing. X.-Y.L. performed the DFT calculations. R.K.M. performed experiments for the CCIH catalyst system, TEA and LCA. J.D. contributed to XAS data analysis. Z.Z. and C.L. contributed to in situ ATR-SEIRAS measurements. S.C. contributed to material characterizations. J.E.H. contributed to in situ Raman measurements. J.W. contributed to TEA. W.N. contributed to XAS measurements. P.O. assisted with DFT calculations. Z.G. and Y.X. contributed to CCIH catalyst system. B.X. and Y.H. contributed to data analysis and discussions and paper preparation. All authors discussed the results and assisted with paper preparation.

Corresponding authors

Correspondence to Yang Hou, David Sinton or Edward H. Sargent.

Ethics declarations

Competing interests

There is a US provisional patent application (63/584,253) titled ‘Processes and systems for the electrochemical reduction of carbon monoxide to propanol, cathode catalysts and cathodes used in the same’ filed by the authors Y.C., X.W., R.K.M., D.S. and E.H.S. and their institutions. The other authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Guiyan Zang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Figs. 1–55 and Tables 1–10.

Supplementary Data 1

The atomic coordinates of the optimized models.

Source data

Source Data Fig. 1

Numerical data.

Source Data Fig. 3

Numerical data.

Source Data Fig. 4

Numerical data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, X., Li, XY. et al. Electrified synthesis of n-propanol using a dilute alloy catalyst. Nat Catal 8, 239–247 (2025). https://doi.org/10.1038/s41929-025-01301-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01301-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing