Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A highly efficient and regenerable Ir1–Cu1 dual-atom catalyst for low-temperature alkane dehydrogenation

Abstract

Alkane dehydrogenation as a direct route to produce olefins receives widespread attention from industry and academia. However, high temperatures (>550 °C) are often needed to break C–H bonds, leading to deleterious side reactions in the alkane dehydrogenation process. Here we reduce the reaction temperature of n-butane dehydrogenation by fabricating a robust and regenerable Ir1–Cu1 dual-atom catalyst. The so-prepared system shows a turnover frequency of 2.45 s−1 at 450 °C, which is 6.3 times higher than the single-atom Ir1/ND@G catalyst, while, at he same time, achieving a high C4 olefin selectivity of 98%. Importantly, key for the success of the Ir1–Cu1 dual-atom catalyst are the sterically favourable geometric configuration and the modulated electronic property, which can lower the reaction barrier for C–H activation, shift the rate-determining step and facilitate the desorption of the product. Thus, a remarkable activity can be achieved for n-butane dehydrogenation at relatively low temperature (≤450 °C).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural characterizations of the Ir1Cu/ND@G catalyst.
Fig. 2: Catalytic performance and reaction mechanism for BDH.
Fig. 3: Theoretical investigation on Ir1Cu/ND@G and Ir1/ND@G.
Fig. 4: Regeneration experiment and structural evolution of Ir1Cu/ND@G.
Fig. 5: The structural characterization in the aggregation–redispersion mechanism.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request. The optimized computational models and MD trajectories are available in the Supplementary Data. Source data are provided with this paper.

References

  1. Sattler, J. J., Ruiz-Martinez, J., Santillan-Jimenez, E. & Weckhuysen, B. M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 114, 10613–10653 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, S. et al. Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies. Chem. Soc. Rev. 50, 3315–3354 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Otroshchenko, T., Jiang, G., Kondratenko, V. A., Rodemerck, U. & Kondratenko, E. V. Current status and perspectives in oxidative, non-oxidative and CO2-mediated dehydrogenation of propane and isobutane over metal oxide catalysts. Chem. Soc. Rev. 50, 473–527 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Zhao, Z.-J., Chiu, C.-c & Gong, J. Molecular understandings on the activation of light hydrocarbons over heterogeneous catalysts. Chem. Sci. 6, 4403–4425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chang, X., Lu, Z., Wang, X., Zhao, Z. J. & Gong, J. Tracking C–H bond activation for propane dehydrogenation over transition metal catalysts: work function shines. Chem. Sci. 14, 6414–6419 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, L. et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 18, 866–873 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, L. et al. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nat. Catal. 3, 628–638 (2020).

    Article  CAS  Google Scholar 

  8. Ryoo, R. et al. Rare-earth-platinum alloy nanoparticles in mesoporous zeolite for catalysis. Nature 585, 221–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Motagamwala, A. H., Almallahi, R., Wortman, J., Igenegbai, V. O. & Linic, S. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit. Science 373, 217 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Peng, M. et al. Fully exposed cluster catalyst (FECC): toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 7, 262–273 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, X. et al. Structure-dependence and metal-dependence on atomically dispersed Ir catalysts for efficient n-butane dehydrogenation. Nat. Commun. 14, 2588 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, X. et al. Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nat. Commun. 12, 2664 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peng, M. et al. Antisintering Pd1 catalyst for propane direct dehydrogenation with in situ active sites regeneration ability. ACS Catal. 12, 2244–2252 (2022).

    Article  CAS  Google Scholar 

  14. Yang, Z. et al. Coking-resistant iron catalyst in ethane dehydrogenation achieved through siliceous zeolite modulation. J. Am. Chem. Soc. 142, 16429–16436 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Ma, R. et al. Insights into the nature of selective nickel sites on Ni/Al2O3 catalysts for propane dehydrogenation. ACS Catal. 12, 12607–12616 (2022).

    Article  CAS  Google Scholar 

  16. Sharma, L. et al. Atomically dispersed tin-modified gamma-alumina for selective propane dehydrogenation under H2S co-feed. ACS Catal. 11, 13472–13482 (2021).

    Article  CAS  Google Scholar 

  17. Wang, W. et al. Single Co sites in ordered SiO2 channels for boosting nonoxidative propane dehydrogenation. ACS Catal. 12, 2632–2638 (2022).

    Article  CAS  Google Scholar 

  18. Deng, Y. et al. Few-atom Pt ensembles enable efficient catalytic cyclohexane dehydrogenation for hydrogen production. J. Am. Chem. Soc. 144, 3535–3542 (2022). 8.

    Article  CAS  PubMed  Google Scholar 

  19. Chen, X., Jia, Z., Huang, F., Diao, J. & Liu, H. Atomically dispersed metal catalysts on nanodiamond and its derivatives: synthesis and catalytic application. Chem. Commun. 57, 11591–11603 (2021).

    Article  CAS  Google Scholar 

  20. Cai, X. et al. Towards a library of atomically dispersed catalysts. Mater. Des. 210, 110080 (2021).

    Article  CAS  Google Scholar 

  21. Dong, C. et al. Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles. Nat. Catal. 5, 485–493 (2022).

    Article  CAS  Google Scholar 

  22. Liu, P., Huang, X., Mance, D. & Copéret, C. Atomically dispersed iridium on MgO(111) nanosheets catalyses benzene–ethylene coupling towards styrene. Nat. Catal. 4, 968–975 (2021).

    Article  CAS  Google Scholar 

  23. Shao, X. et al. Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO2 to formate. Chem 5, 693–705 (2019).

    Article  CAS  Google Scholar 

  24. Ghijsen, J. et al. Electronic-structure of Cu2O and CuO. Phys. Rev. B 38, 11322–11330 (1988).

    Article  CAS  Google Scholar 

  25. Ertl, G., Hierl, R., Knözinger, H., Thiele, N. & Urbach, H. P. XPS study of copper aluminate catalysts. Appl. Surf. Sci. 5, 49–64 (1980).

    Article  CAS  Google Scholar 

  26. Robert, T., Bartel, M. & Offergeld, G. Characterization of oxygen species adsorbed on copper and nickel oxides by X-ray photoelectron spectroscopy. Surf. Sci. 33, 123–130 (1972).

    Article  CAS  Google Scholar 

  27. Atanasoska, L., Atanasoski, R. & Trasatti, S. XPS and AES study of mixed layers of RuO2 and IrO2. Vacuum 40, 91–94 (1990).

    Article  CAS  Google Scholar 

  28. Duckers, K. & Bonzel, H. P. Core and valence level spectroscopy with Y-M-Zeta radiation—CO and K on (110) surfaces of Ir, Pt and Au. Surf. Sci. 213, 25–48 (1989).

    Article  Google Scholar 

  29. Lee, B.-H. et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 18, 620–626 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Tang, X. et al. Direct oxidation of methane to oxygenates on supported single Cu atom catalyst. Appl. Catal. B 285, 119827 (2021).

    Article  CAS  Google Scholar 

  31. Fan, C. et al. The influence of Si/Al ratio on the catalytic property and hydrothermal stability of Cu-SSZ-13 catalysts for NH3-SCR. Appl. Catal. A Gen. 550, 256–265 (2018).

    Article  CAS  Google Scholar 

  32. Lian, Z., Si, C., Jan, F., Zhi, S. & Li, B. Coke deposition on Pt-based catalysts in propane direct dehydrogenation: kinetics, suppression, and elimination. ACS Catal. 11, 9279–9292 (2021).

    Article  CAS  Google Scholar 

  33. Jin, R. X. et al. Low temperature oxidation of ethane to oxygenates by oxygen over iridium-cluster catalysts. J. Am. Chem. Soc. 141, 18921–18925 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Hu, Q. et al. Facile synthesis of sub-nanometric copper clusters by double confinement enables selective reduction of carbon dioxide to methane. Angew. Chem. Int. Ed. 59, 19054–19059 (2020).

    Article  CAS  Google Scholar 

  35. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  37. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  38. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  39. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron–gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  CAS  Google Scholar 

  42. Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).

    Article  CAS  Google Scholar 

  43. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  44. Jonsson, H., Mills, G. & Jacobsen, K. W. in Classical and Quantum Dynamics in Condensed Phase Simulations (eds Berne, B. J. et al.) 385–404 (World Scientific, 1998).

  45. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant numbers 2022YFA1504500, 2022YFB4003100 and 2021YFA1502802), the National Natural Science Foundation of China (grant numbers 92145301, U21B2092, 22232001, 21961160722, 91845201 and 22072162), China Postdoctoral Science Foundation (grant number 2024M763338), Chinese Academy of Sciences (grant number 172GJHZ2022028MI), Shenyang Young Talents Program (grant number RC210435), Dalian National Lab for Clean Energy (DNL Cooperation Fund 202001) and China Petroleum & Chemical Corporation (grant number 420043-2). The XAS experiments were conducted in Beijing Synchrotron Radiation Facility (BSRF). D.M. acknowledges support from the Tencent Foundation through the XPLORER PRIZE and New Cornerstone Investigator Program. X. Cai acknowledges the support from the NTU Presidential Postdoctoral Fellowship (grant number 03INS001828C230).

Author information

Authors and Affiliations

Authors

Contributions

H.L. and D.M. conceived the research. X. Chen conducted material synthesis and carried out the catalytic performance test. M.W. conducted the X-ray absorption fine structure spectroscopic measurements and analysed the data. Y.H. performed the DFT calculations. X. Cai contributed to the aberration-corrected high-angle annular dark-field scanning transmission electron microscopy. M.W. and P.M. conducted the X-ray photoelectron spectroscopy measurements. J.D. performed some of the synthesis experiments. The paper was primarily written by X. Chen, D.X., H.L. and D.M. All authors contributed to discussions and paper review.

Corresponding authors

Correspondence to Xiangbin Cai, Hongyang Liu or Ding Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Sonia Bocanegra and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28, Notes 1–3, Tables 1–24 and References.

Supplementary Data

The optimized computational models and MD trajectories.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wang, M., He, Y. et al. A highly efficient and regenerable Ir1–Cu1 dual-atom catalyst for low-temperature alkane dehydrogenation. Nat Catal 8, 436–447 (2025). https://doi.org/10.1038/s41929-025-01328-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01328-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing