Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cobalt-catalysed alkene hydronitration enabled by anomeric nitroamide

Abstract

Tertiary nitroalkanes, as well as their reduced products, α-tertiary amines, play an essential role in drug discovery as either key synthetic precursors or final motifs in targeted molecules. Existing methods to prepare tertiary nitro compounds generally rely on polar-bond disconnections, in which strong bases or highly active electrophiles are needed. Here we report the development of an anomeric nitroamide-based reagent that enables selective metal-hydride hydrogen atom transfer-based Co-catalysed alkene hydronitration for the preparation of valuable tertiary nitro compounds. This mild, scalable reaction shows broad functional group tolerance. Its synthetic application is demonstrated via late-stage nitration of complex alkenes derived from drugs and natural products, and simplifying the synthesis of a rare naturally occurring nitro sugar. Simple access to isotopically labelled 15N-containing nitro compounds is also disclosed. The anomeric nitroamide reagent was deemed safe by energetic measurements and its reactivity rationalized based on X-ray crystallographic analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies to access tertiary nitroalkanes.
Fig. 2: Reaction optimization and comparison of 16 with precedented nitrating agents.
Fig. 3: Substrate scope of alkene hydronitration.
Fig. 4: Synthetic applications.
Fig. 5: Mechanistic discussion.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the Article and its Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under the deposition numbers CCDC 2385494 (16), 2329539 (27), 2329540 (35A), 2383725 (35B), 2380454 (36), 2373356 (39), 2376555 (40), 2376557 (41), 2377801 (42), 2377800 (43), 2375144 (48), 2376556 (50), 2373359 (51), 2383726 (56), 2377632 (58), 2375142 (60), 2382868 (62), 2380180 (63) and 2382867 (67). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Ballini, R. & Palmieri, A. Nitroalkanes: Synthesis, Reactivity, and Applications (Wiley, 2021).

  2. Qiu, H. et al. Enantioselective synthesis and biological evaluation of pyrrolidines bearing quaternary stereogenic centers. J. Med. Chem. 66, 9866–9880 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Mergelsberg, I. et al. Process and intermediates for the synthesis of 8-[{1-(3,5-bis(thrifluoromethyl)phenyl)ethoxy}methyl]-8-phenyl-1,7-diazadpiro[4,5]decan-2-one compounds. Patent WO2008118328A2 (2008).

  4. Ganguly, A. K., Sarre, O. Z. & Reimann, H. Chemistry of everninomicin antibiotics. III. Evernitrose, a naturally occurring nitro sugar from everninomicins. J. Am. Chem. Soc. 90, 7129–7130 (1968).

    Article  CAS  PubMed  Google Scholar 

  5. Liu, Y. et al. Lycodine-type alkaloids from Lycopodiastrum casuarinoides and their cholinesterase inhibitory activities. Fitoterapia 130, 203–209 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Ballini, R. & Palmieri, A. Synthetic procedures for the preparation of nitroalkanes. Adv. Synth. Catal. 360, 2240–2266 (2018).

    Article  CAS  Google Scholar 

  7. Trost, B. M. & Surivet, J.-P. Asymmetric alkylation of nitroalkanes. Angew. Chem. Int. Ed. 39, 3122–3124 (2000).

    Article  CAS  Google Scholar 

  8. Kim, R. S., Dinh-Nguyen, L. V., Shimkin, K. W. & Watson, D. A. Copper-catalyzed propargylation of nitroalkanes. Org. Lett. 22, 8106–8110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rezazadeh, S. et al. Photoredox-nickel dual-catalyzed C-alkylation of secondary nitroalkanes: access to sterically hindered α-tertiary amines. J. Am. Chem. Soc. 145, 4707–4715 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fu, H., Qiao, T., Carceller, J. M., MacMillan, S. N. & Hyster, T. K. Asymmetric C-alkylation of nitroalkanes via enzymatic photoredox catalysis. J. Am. Chem. Soc. 145, 787–793 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gilbert, K. E. & Borden, W. T. Peracid oxidation of aliphatic amines: general synthesis of nitroalkanes. J. Org. Chem. 44, 659–661 (1979).

    Article  CAS  Google Scholar 

  12. Lajunen, M. & Hiukka, R. Acid-catalyzed hydrolysis of bridged bi- and tricyclic compounds. 25. Comparison of the hydrations of 2-methyl-2-norbornene and 2-methylenenorbornane with those of 1-methylcyclohexene and methylenecyclohexane. J. Org. Chem. 51, 1522–1525 (1986).

    Article  CAS  Google Scholar 

  13. Isayama, S. & Mukaiyama, T. A new method for preparation of alcohols from olefins with molecular oxygen and phenylsilane by the use of bis(acetylacetonato)cobalt(II). Chem. Lett. 18, 1071–1074 (2006).

    Article  Google Scholar 

  14. Gaspar, B. & Carreira, E. M. Catalytic hydrochlorination of unactivated olefins with para-toluenesulfonyl chloride. Angew. Chem. Int. Ed. 47, 5758–5760 (2008).

    Article  CAS  Google Scholar 

  15. Barker, T. J. & Boger, D. L. Fe(III)/NaBH4-mediated free radical hydrofluorination of unactivated alkenes. J. Am. Chem. Soc. 134, 13588–13591 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma, X. & Herzon, S. B. Non-classical selectivities in the reduction of alkenes by cobalt-mediated hydrogen atom transfer. Chem. Sci. 6, 6250–6255 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Elfert, J., Frye, N. L., Rempel, I., Daniliuc, C. G. & Studer, A. Iron-catalyzed radical Markovnikov hydrohalogenation and hydroazidation of alkenes. Nat. Commun. 15, 7230 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Waser, J., Nambu, H. & Carreira, E. M. Cobalt-catalyzed hydroazidation of olefins: convenient access to alkyl azides. J. Am. Chem. Soc. 127, 8294–8295 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Qin, T. et al. Cobalt-catalyzed radical hydroamination of alkenes with N-fluorobenzenesulfonimides. Angew. Chem. Int. Ed. 60, 25949–25957 (2021).

    Article  CAS  Google Scholar 

  20. Miao, H., Guan, M., Xiong, T., Zhang, G. & Zhang, Q. Cobalt-catalyzed enantioselective hydroamination of arylalkenes with secondary amines. Angew. Chem. Int. Ed. 62, e202213913 (2023).

    Article  CAS  Google Scholar 

  21. Gaspar, B. & Carreira, E. M. Mild cobalt-catalyzed hydrocyanation of olefins with tosyl cyanide. Angew. Chem. Int. Ed. 46, 4519–4522 (2007).

    Article  CAS  Google Scholar 

  22. Crossley, S. W. M., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tilney-Bassett, J. F. & Waters, W. A. 610. Properties and reactions of free alkyl radicals in solution. Part IX. Synthesis and reactions of some tertiary nitroalkanes. J. Chem. Soc. https://doi.org/10.1039/JR9570003129 (1957).

  24. Nishiwaki, Y., Sakaguchi, S. & Ishii, Y. An efficient nitration of light alkanes and the alkyl side-chain of aromatic compounds with nitrogen dioxide and nitric acid catalyzed by N-hydroxyphthalimide. J. Org. Chem. 67, 5663–5668 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Chatterjee, J., Coombes, R. G., Barnes, J. R. & Fildes, M. J. Mechanism of reaction of nitrogen dioxide with alkenes in solution. J. Chem. Soc., Perkin Trans. 2 https://doi.org/10.1039/P29950001031 (1995).

  26. Lewis, R. J. & Moodie, R. B. The nitration of styrenes by nitric acid in dichloromethane. J. Chem. Soc., Perkin Trans. 2 https://doi.org/10.1039/A605782I (1997).

  27. Gui, J. et al. Practical olefin hydroamination with nitroarenes. Science 348, 886–891 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Bhunia, A., Bergander, K., Daniliuc, C. G. & Studer, A. Fe-catalyzed anaerobic Mukaiyama-type hydration of alkenes using nitroarenes. Angew. Chem. Int. Ed. 60, 8313–8320 (2021).

    Article  CAS  Google Scholar 

  29. Patra, S., Mosiagin, I., Giri, R. & Katayev, D. Organic nitrating reagents. Synthesis 54, 3432–3472 (2022).

    Article  CAS  Google Scholar 

  30. Calvo, R., Zhang, K., Passera, A. & Katayev, D. Facile access to nitroarenes and nitroheteroarenes using N-nitrosaccharin. Nat. Commun. 10, 3410 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jia, F., Li, A. & Hu, X. Dinitro-5,5-dimethylhydantoin: an arene nitration reagent. Org. Lett. 25, 4605–4609 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, K., Jelier, B., Passera, A., Jeschke, G. & Katayev, D. Synthetic diversity from a versatile and radical nitrating reagent. Chem. Eur. J. 25, 12929–12939 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Arnatt, C. K. & Zhang, Y. Facile synthesis of 2,3,5,6-tetrabromo-4-methyl-nitrocyclohexa-2,5-dien-1-one, a mild nitration reagent. Tetrahedron Lett. 53, 1592–1594 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, Y. et al. Discovery of N–X anomeric amides as electrophilic halogenation reagents. Nat. Chem. 16, 1539–1545 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Glover, S. A. Anomeric amides—structure, properties and reactivity. Tetrahedron 54, 7229–7271 (1998).

    Article  CAS  Google Scholar 

  36. Xu, X., Wang, M., Peng, L. & Guo, C. Nickel-catalyzed asymmetric propargylation for the synthesis of axially chiral 1,3-disubstituted allenes. J. Am. Chem. Soc. 144, 21022–21029 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Mimura, M. et al. Synthesis and evaluation of (piperidinomethylene)bis(phosphonic acid) derivatives as anti-osteoporosis agents. Chem. Pharm. Bull. 41, 1971–1986 (1993).

    Article  CAS  Google Scholar 

  38. von Philipsborn, W. & Müller, D.-C. R. 15N-NMR spectroscopy—new methods and applications. Angew. Chem. Int. Ed. 25, 383–413 (1986).

    Article  Google Scholar 

  39. Benson, L. M., Naylor, S. & Tomlinson, A. J. Investigation of Maillard reaction products using 15N isotope studies and analysis by electrospray ionization–mass spectrometry. Food Chem. 62, 179–183 (1998).

    Article  CAS  Google Scholar 

  40. von Morze, C. et al. 15N-carnitine, a novel endogenous hyperpolarized MRI probe with long signal lifetime. Magn. Reson. Med. 85, 1814–1820 (2021).

    Article  Google Scholar 

  41. Xia, W. et al. Advances of stable isotope technology in food safety analysis and nutrient metabolism research. Food Chem. 408, 135191 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Lloyd-Jones, G. C. & Muñoz, M. P. Isotopic labelling in the study of organic and organometallic mechanism and structure: an account. J. Label. Compd. Radiopharm. 50, 1072–1087 (2007).

    Article  CAS  Google Scholar 

  43. Dayie, K. T. Key labeling technologies to tackle sizeable problems in RNA structural biology. Int. J. Mol. Sci. 9, 1214–1240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mariotti, A., Landreau, A. & Simon, B. 15N isotope biogeochemistry and natural denitrification process in groundwater: application to the chalk aquifer of northern France. Geochim. Cosmochim. Acta 52, 1869–1878 (1988).

    Article  CAS  Google Scholar 

  45. May, D. S. et al. 15N stable isotope labeling and comparative metabolomics facilitates genome mining in cultured cyanobacteria. ACS Chem. Biol. 15, 758–765 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Finkelstein, P. et al. Nitrogen atom insertion into indenes to access isoquinolines. Chem. Sci. 14, 2954–2959 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bartholomew, G. L. et al. 14N to 15N isotopic exchange of nitrogen heteroaromatics through skeletal editing. J. Am. Chem. Soc. 146, 2950–2958 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Xing, Q., Chandrachud, P. P., Tillett, K. & Lopchuk, J. M. Regioselective hydroamination of unactivated olefins with diazirines as a diversifiable nitrogen source. Nat. Commun. 15, 6049 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miller, M. et al. 3-Pyridinylindazole compounds as inhibitors of leucine-rich repeat kinase enzyme activity and their preparation. Patent WO2014137728 (2014).

  50. Ganguly, A. K. & Szmulewicz, S. Structure of everninomicin C. J. Antibiot. 28, 710–712 (1975).

    Article  CAS  Google Scholar 

  51. Clode, D. M., Horton, D. & Weckerle, W. Reaction of derivatives of methyl 2,3-O-benzylidene-6-deoxy-α-l-mannopyranoside with butyllithium: synthesis of methyl 2, 6-dideoxy-4-O-methyl-α-l-erytho-hexopyranosid-3-ulose. Carbohydr. Res. 49, 305–314 (1976).

    Article  CAS  PubMed  Google Scholar 

  52. Yoshimura, J., Matsuzawa, M., Sato, K.-i & Nagasawa, Y. The synthesis of evernitrose and 3-epi-evernitrose. Carbohydr. Res. 76, 67–78 (1979).

    Article  CAS  Google Scholar 

  53. Touney, E. E., Foy, N. J. & Pronin, S. V. Catalytic radical–polar crossover reactions of allylic alcohols. J. Am. Chem. Soc. 140, 16982–16987 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Zhou, X.-L. et al. Cobalt-catalyzed intermolecular hydrofunctionalization of alkenes: evidence for a bimetallic pathway. J. Am. Chem. Soc. 141, 7250–7255 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Wilson, C. V. & Holland, P. L. Mechanism of alkene hydrofunctionalization by oxidative cobalt(salen) catalyzed hydrogen atom transfer. J. Am. Chem. Soc. 146, 2685–2700 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shigehisa, H., Aoki, T., Yamaguchi, S., Shimizu, N. & Hiroya, K. Hydroalkoxylation of unactivated olefins with carbon radicals and carbocation species as key intermediates. J. Am. Chem. Soc. 135, 10306–10309 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Nakagawa, M., Matsuki, Y., Nagao, K. & Ohmiya, H. A triple photoredox/cobalt/brønsted acid catalysis enabling Markovnikov hydroalkoxylation of unactivated alkenes. J. Am. Chem. Soc. 144, 7953–7959 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Shigehisa, H. et al. Catalytic synthesis of saturated oxygen heterocycles by hydrofunctionalization of unactivated olefins: unprotected and protected strategies. J. Am. Chem. Soc. 138, 10597–10604 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, B. et al. Cobalt-catalyzed Markovnikov-selective radical hydroacylation of unactivated alkenes with acylphosphonates. J. Am. Chem. Soc. 143, 4955–4961 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Wu, J. & Ma, Z. Metal-hydride hydrogen atom transfer (MHAT) reactions in natural product synthesis. Org. Chem. Front. 8, 7050–7076 (2021).

    Article  CAS  Google Scholar 

  61. Sperry, J. B. et al. Thermal stability assessment of peptide coupling reagents commonly used in pharmaceutical manufacturing. Org. Process Res. Dev. 22, 1262–1275 (2018).

    Article  CAS  Google Scholar 

  62. Stein, C. et al. Anomeric amide-enabled alkene–arene and alkene–alkene aminative coupling. Angew. Chem. Int. Ed. 64, e202418141 (2025).

    Article  CAS  Google Scholar 

  63. Kennedy, S. H., Dherange, B. D., Berger, K. J. & Levin, M. D. Skeletal editing through direct nitrogen deletion of secondary amines. Nature 593, 223–227 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the National Institutes of Health (grant no. GM-118176, to P.S.B.). We thank L. Pasternack and G. J. Kroon (Scripps Research) for assistance with NMR spectroscopy; J. Lee, B. Sanchez and Q. N. Wong (Scripps Research ASF) for HRMS; and A. Pollatos for proofreading.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and P.S.B. conceptualized the study and developed the reagents. Y.W. conducted reaction optimization. Y.W. and M.M.B. contributed to the substrate scope and analysed the data. L.N.G. performed computational experiments. P.F.R. performed the safety experiments. J.B.B. and M.G. performed the X-ray crystallographic analysis. Y.W., M.M.B. and P.S.B. wrote the paper. P.S.B. supervised this work. All authors contributed to discussions.

Corresponding author

Correspondence to Phil S. Baran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Qian Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–34, Figs. 1–14, experimental procedures, product characterization and NMR spectra.

Supplementary Data 1

Crystallographic data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Bogner, M.M., Bailey, J.B. et al. Cobalt-catalysed alkene hydronitration enabled by anomeric nitroamide. Nat Catal 8, 457–464 (2025). https://doi.org/10.1038/s41929-025-01336-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01336-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing