Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Understanding two voltammetric features of water reduction and water oxidation in mild pH solutions

Abstract

Electrification of many processes requires the use of aqueous solutions under mild pH conditions where the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) can become competing reactions. The HER and OER under mild pH conditions show peculiar voltammetric behaviours, specifically two reductive or oxidative features, that are not observed in strongly acidic and basic solutions. These behaviours cannot be fully explained by thermodynamic considerations only and are particularly complex owing to the involvement of multiple water species (H3O+, H2O and OH) and the conversion between these species via water autodissociation and acid–base neutralization reactions. This Analysis provides a systematic and conceptual explanation of the effect of pH, potential, stirring and buffer on the thermodynamics and kinetics of the HER and OER, providing fundamental and yet essential insights into comprehending HER and OER behaviours under mild pH conditions, and their implications for other aqueous reactions more broadly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expected and observed LSVs for the HER.
Fig. 2: Results from unbuffered pH 1–3 solutions with convection.
Fig. 3: LSVs in unbuffered pH 0–14 solutions with convection.
Fig. 4: LSVs of poor HER catalysts in an unbuffered, unstirred pH 2 solution.
Fig. 5: LSVs in buffered solutions with convection.
Fig. 6: LSVs collected for the OER.
Fig. 7: LSVs for ammonia oxidation.

Similar content being viewed by others

Data availability

The source data files for the plots contained in the current study are attached. Source data are provided with this paper.

References

  1. Roger, I., Shipman, M. A. & Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017).

    Article  CAS  Google Scholar 

  2. Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Li, X., Hao, X., Abudula, A. & Guan, G. Nanostructured catalysts for electrochemical water splitting: current state and prospects. J. Mater. Chem. A 4, 11973–12000 (2016).

    Article  CAS  Google Scholar 

  4. Xia, R., Overa, S. & Jiao, F. Emerging electrochemical processes to decarbonize the chemical industry. JACS Au 2, 1054–1070 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martín, A. J. & Pérez-Ramírez, J. Heading to distributed electrocatalytic conversion of small abundant molecules into fuels, chemicals, and fertilizers. Joule 3, 2602–2621 (2019).

    Article  Google Scholar 

  6. Bender, M. T., Yuan, X., Goetz, M. K. & Choi, K. S. Electrochemical hydrogenation, hydrogenolysis, and dehydrogenation for reductive and oxidative biomass upgrading using 5-hydroxymethylfurfural as a model system. ACS Catal. 12, 12349–12368 (2022).

    Article  CAS  Google Scholar 

  7. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Goetz, M. K., Bender, M. T. & Choi, K.-S. Predictive control of selective secondary alcohol oxidation of glycerol on NiOOH. Nat. Commun. 13, 5848 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Varela, A. S. et al. pH effects on the selectivity of the electrocatalytic CO2 reduction on graphene-embedded Fe–N–C motifs: bridging concepts between molecular homogeneous and solid-state heterogeneous catalysis. ACS Energy Lett. 3, 812–817 (2018).

    Article  CAS  Google Scholar 

  10. Yuan, X., Lee, K., Eisenberg, J. B., Schmidt, J. R. & Choi, K.-S. Selective deoxygenation of biomass-derived carbonyl compounds on Zn via electrochemical Clemmensen reduction. Nat. Catal. 7, 43–54 (2024).

    Article  CAS  Google Scholar 

  11. Wang, J. et al. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 9, 1795 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Durst, J. et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 7, 2255–2260 (2014).

    Article  CAS  Google Scholar 

  15. Strmcnik, D., Lopes, P. P., Genorio, B., Stamenkovic, V. R. & Markovic, N. M. Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29, 29–36 (2016).

    Article  CAS  Google Scholar 

  16. Lamoureux, P. S., Singh, A. R. & Chan, K. pH effects on hydrogen evolution and oxidation over Pt(111): insights from first-principles. ACS Catal. 9, 6194–6201 (2019).

    Article  CAS  Google Scholar 

  17. Govindarajan, N., Xu, A. & Chan, K. How pH affects electrochemical processes. Science 375, 379–380 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Jung, O., Jackson, M. N., Bisbey, R. P., Kogan, N. E. & Surendranath, Y. Innocent buffers reveal the intrinsic pH- and coverage-dependent kinetics of the hydrogen evolution reaction on noble metals. Joule 6, 476–493 (2022).

    Article  CAS  Google Scholar 

  19. McCrum, I. T. & Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 5, 891–899 (2020).

    Article  CAS  Google Scholar 

  20. Zhou, Z. et al. Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects. Energy Environ. Sci. 13, 3185–3206 (2020).

    Article  CAS  Google Scholar 

  21. Liu, L., Liu, Y. & Liu, C. enhancing the understanding of hydrogen evolution and oxidation reactions on Pt(111) through ab initio simulation of electrode/electrolyte kinetics. J. Am. Chem. Soc. 142, 4985–4989 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Auinger, M. et al. Near-surface ion distribution and buffer effects during electrochemical reactions. Phys. Chem. Chem. Phys. 13, 16384–16394 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Grozovski, V., Vesztergom, S., Láng, G. G. & Broekmann, P. Electrochemical hydrogen evolution: H+ or H2O reduction? A rotating disk electrode study. J. Electrochem. Soc. 164, E3171–E3178 (2017).

    Article  CAS  Google Scholar 

  24. Su, L. et al. Electric-double-layer origin of the kinetic pH effect of hydrogen electrocatalysis revealed by a universal hydroxide adsorption-dependent inflection-point behavior. J. Am. Chem. Soc. 145, 12051–12058 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Li, J., Stenlid, J. H., Ludwig, T., Lamoureux, P. S. & Abild-Pedersen, F. Modeling potential-dependent electrochemical activation barriers: revisiting the alkaline hydrogen evolution reaction. J. Am. Chem. Soc. 143, 19341–19355 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Sheng, W., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529–B1536 (2010).

    Article  CAS  Google Scholar 

  27. Sheng, W., Myint, M., Chen, J. G. & Yan, Y. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 6, 1509–1512 (2013).

    Article  CAS  Google Scholar 

  28. Ma, W. et al. Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem. Soc. Rev. 50, 12897–12914 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Xiong, Y. et al. Electrochemical nitrate reduction: ammonia synthesis and the beyond. Adv. Mater. 36, 2304021 (2024).

    Article  CAS  Google Scholar 

  30. Sun, D., Xu, X., Qin, Y., Jiang, S. P. & Shao, Z. Rational design of Ag-based catalysts for the electrochemical CO2 reduction to CO: a review. ChemSusChem 13, 39–58 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Hoffman, Z. B., Gray, T. S., Moraveck, K. B., Gunnoe, T. B. & Zangari, G. Electrochemical reduction of carbon dioxide to syngas and formate at dendritic copper–indium electrocatalysts. ACS Catal. 7, 5381–5390 (2017).

    Article  CAS  Google Scholar 

  32. Jackson, M. N., Jung, O., Lamotte, H. C. & Surendranath, Y. Donor-dependent promotion of interfacial proton-coupled electron transfer in aqueous electrocatalysis. ACS Catal. 9, 3737–3743 (2019).

    Article  CAS  Google Scholar 

  33. Clary, K. E. et al. Increasing the rate of the hydrogen evolution reaction in neutral water with protic buffer electrolytes. Proc. Natl Acad. Sci. 117, 32947–32953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ovalle, V. J. & Waegele, M. M. Influence of pH and proton donor/acceptor identity on electrocatalysis in aqueous media. J. Phys. Chem. C. 125, 18567–18578 (2021).

    Article  CAS  Google Scholar 

  35. Dionigi, F. & Strasser, P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv. Energy Mater. 6, 1600621 (2016).

    Article  Google Scholar 

  36. Kapałka, A. et al. Electrochemical behavior of ammonia at Ni/Ni(OH)2 electrode. Electrochem. Commun. 12, 18–21 (2010).

    Article  Google Scholar 

  37. Allagui, A., Sarfraz, S., Middleton, B., Almomani, F. & Baranova, E. A. Ammonia electrooxidation on NiPd nanoparticles in alkaline media: effect of pH and concentration. ECS Trans. 50, 1897–1906 (2013).

    Article  Google Scholar 

  38. Allagui, A., Sarfraz, S., Ntais, S. & Baranova, E. A. Electrochemical behavior of ammonia on Ni98Pd2 nano-structured catalyst. Int. J. Hydrogen Energy 39, 41–48 (2014).

    Article  CAS  Google Scholar 

  39. Shih, Y.-J., Huang, Y.-H. & Huang, C. P. Electrocatalytic ammonia oxidation over a nickel foam electrode: role of Ni(OH)2(s)-NiOOH(s) nanocatalysts. Electrochim. Acta 263, 261–271 (2018).

    Article  CAS  Google Scholar 

  40. Adli, N. M., Zhang, H., Mukherjee, S. & Wu, G. Review—ammonia oxidation electrocatalysis for hydrogen generation and fuel cells. J. Electrochem. Soc. 165, J3130–J3147 (2018).

    Article  CAS  Google Scholar 

  41. Kang, D. et al. Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting. Chem. Rev. 115, 12839–12887 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was support by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy through grant DE-SC0024211.

Author information

Authors and Affiliations

Authors

Contributions

K.-S.C. and M.T.B. conceived the project. Under the supervision of K.-S.C., X.Y. and M.T.B. performed all experiments with the contribution of M.K. for HER LSVs with various metals. All authors discussed the results and contributed to writing the manuscript.

Corresponding author

Correspondence to Kyoung-Shin Choi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note 1, Supplementary Tables 1 and 2, and Supplementary References 1–8.

Source data

Source Data Fig. 1

Data used to plot Fig. 1

Source Data Fig. 2

Data used to plot Fig. 2

Source Data Fig. 3

Data used to plot Fig. 3

Source Data Fig. 4

Data used to plot Fig. 4

Source Data Fig. 5

Data used to plot Fig. 5

Source Data Fig. 6

Data used to plot Fig. 6

Source Data Fig. 7

Data used to plot Fig. 7

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Bender, M.T., Ko, M. et al. Understanding two voltammetric features of water reduction and water oxidation in mild pH solutions. Nat Catal 8, 495–506 (2025). https://doi.org/10.1038/s41929-025-01339-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01339-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing