Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dissolved Fe species enable a cooperative solid–molecular mechanism for the oxygen evolution reaction on NiFe-based catalysts

Abstract

The oxygen evolution reaction is a key process in many energy technologies, but improving its efficiency remains challenging due to the energy scaling relationships that limit the reaction kinetics on conventional single-active-site solid catalysts. Here we report a cooperative solid–molecular mechanism for oxygen evolution on NiFe-based hydroxide electrocatalysts. By identifying the critical interfacial species and understanding their dynamics, we find that molecular FeO42− species, derived from the dissolution of Fe from the solid catalyst, act as molecular co-catalysts that participate in the critical O–O bond-formation step along with solid sites. This synergistic mechanism, involving both solid and molecular active species, circumvents the typical scaling limitations observed for solid catalysts alone. Our findings reveal an unconventional solid–molecular mechanism that governs electrocatalysis at the solid–liquid interface and suggest a strategy for transcending scaling constraints through cooperative multi-site catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dynamic behaviour at the electrode–electrolyte interface.
Fig. 2: Dynamic local structural change in Fe species during the OER.
Fig. 3: Interaction between the electrode and the molecular Fe species.
Fig. 4: Mechanistic understanding and schematic illustration of the SMM.
Fig. 5: OER performance of the MNF catalysts with and without the addition of iron gluconate to the electrolyte.

Similar content being viewed by others

Data availability

Source data are provided with this paper. The atomic coordinates of the optimized computational models are also provided. Other data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Article  PubMed  Google Scholar 

  2. Thorarinsdottir, A. E., Veroneau, S. S. & Nocera, D. G. Self-healing oxygen evolution catalysts. Nat. Commun. 13, 1243 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nong, H. N. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Gorlin, M. et al. Oxygen evolution reaction dynamics, Faradaic charge efficiency, and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 138, 5603–5614 (2016).

    Article  PubMed  Google Scholar 

  5. Grimaud, A. et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Zou, S. et al. Fe (oxy)hydroxide oxygen evolution reaction electrocatalysis: intrinsic activity and the roles of electrical conductivity, substrate, and dissolution. Chem. Mater. 27, 8011–8020 (2015).

    Article  CAS  Google Scholar 

  7. Guo, J. et al. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 8, 264–272 (2023).

    CAS  Google Scholar 

  8. Wang, X. et al. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 611, 702–708 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Yang, H. et al. Intramolecular hydroxyl nucleophilic attack pathway by a polymeric water oxidation catalyst with single cobalt sites. Nat. Catal. 5, 414–429 (2022).

    Article  CAS  Google Scholar 

  10. Righi, G. et al. On the origin of multihole oxygen evolution in haematite photoanodes. Nat. Catal. 5, 888–899 (2022).

    Article  CAS  Google Scholar 

  11. Bai, L., Hsu, C.-S., Alexander, D. T. L., Chen, H. M. & Hu, X. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 6, 1054–1066 (2021).

    Article  CAS  Google Scholar 

  12. Li, J. et al. Reaction kinetics and interplay of two different surface states on hematite photoanodes for water oxidation. Nat. Commun. 12, 255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, W. & Cao, R. Switching the O–O bond-formation mechanism by controlling water activity. Chem 7, 1981–1982 (2021).

    Article  CAS  Google Scholar 

  14. Roy, C. et al. Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy. Nat. Catal. 1, 820–829 (2018).

    Article  CAS  Google Scholar 

  15. Dickens, C. F., Kirk, C. & Nørskov, J. K. Insights into the electrochemical oxygen evolution reaction with ab initio calculations and microkinetic modeling: beyond the limiting potential volcano. J. Phys. Chem. C 123, 18960–18977 (2019).

    Article  CAS  Google Scholar 

  16. Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017).

    Article  Google Scholar 

  17. Kondo, M., Tatewaki, H. & Masaoka, S. Design of molecular water oxidation catalysts with earth-abundant metal ions. Chem. Soc. Rev. 50, 6790–6831 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  19. Velasco-Vélez, J.-J. et al. Surface electron–hole rich species active in the electrocatalytic water oxidation. J. Am. Chem. Soc. 143, 12524–12534 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Craig, M. J. et al. Universal scaling relations for the rational design of molecular water oxidation catalysts with near-zero overpotential. Nat. Commun. 10, 4993 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang, N. et al. Doping shortens the metal/metal distance and promotes OH coverage in non-noble acidic oxygen evolution reaction catalysts. J. Am. Chem. Soc. 145, 7829–7836 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, N. & Chai, Y. Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation. Energy Environ. Sci. 14, 4647–4671 (2021).

    Article  CAS  Google Scholar 

  23. Hong, W. T. et al. Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides. Energy Environ. Sci. 10, 2190–2200 (2017).

    Article  CAS  Google Scholar 

  24. Chen, F.-Y., Wu, Z.-Y., Adler, Z. & Wang, H. Stability challenges of electrocatalytic oxygen evolution reaction: from mechanistic understanding to reactor design. Joule 5, 1704–1731 (2021).

    Article  CAS  Google Scholar 

  25. Samira, S. et al. Dynamic surface reconstruction unifies the electrocatalytic oxygen evolution performance of nonstoichiometric mixed metal oxides. JACS Au 1, 2224–2241 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wen, Y. et al. Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation. J. Am. Chem. Soc. 143, 6482–6490 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, S. et al. Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 5, 881–890 (2020).

    Article  CAS  Google Scholar 

  28. Chung, D. Y. et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat. Energy 5, 222–230 (2020).

    Article  Google Scholar 

  29. Kuai, C. et al. Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts. Nat. Catal. 3, 743–753 (2020).

    Article  CAS  Google Scholar 

  30. Kuai, C. et al. Revealing the dynamics and roles of iron incorporation in nickel hydroxide water oxidation catalysts. J. Am. Chem. Soc. 143, 18519–18526 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Trotochaud, L., Young, S. L., Ranney, J. K. & Boettcher, S. W. Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electrochem. Soc. 134, 377 (1987).

    Article  CAS  Google Scholar 

  33. Klaus, S., Cai, Y., Louie, M. W., Trotochaud, L. & Bell, A. T. Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity. J. Phys. Chem. C 119, 7243–7254 (2015).

    Article  CAS  Google Scholar 

  34. Michael, J. D. et al. Alkaline electrolyte and Fe impurity effects on the performance and active-phase structure of NiOOH thin films for OER catalysis applications. J. Phys. Chem. C 119, 11475–11481 (2015).

    Article  CAS  Google Scholar 

  35. Stevens, M. B., Trang, C. D. M., Enman, L. J., Deng, J. & Boettcher, S. W. Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 139, 11361–11364 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Akbashev, A. R. et al. Probing the stability of SrIrO3 during active water electrolysis via operando atomic force microscopy. Energy Environ. Sci. 16, 513–522 (2023).

    Article  CAS  Google Scholar 

  37. Bao, F. et al. Host, suppressor, and promoter—the roles of Ni and Fe on oxygen evolution reaction activity and stability of NiFe alloy thin films in alkaline media. ACS Catal. 11, 10537–10552 (2021).

    Article  CAS  Google Scholar 

  38. Hu, C. et al. Surface-enhanced Raman spectroscopic evidence of key intermediate species and role of NiFe dual-catalytic center in water oxidation. Angew. Chem. Int. Ed. 60, 19774–19778 (2021).

    Article  CAS  Google Scholar 

  39. Mefford, J. T. et al. Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 593, 67–73 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Peng, L. et al. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction. Angew. Chem. Int. Ed. 60, 24612–24619 (2021).

    Article  CAS  Google Scholar 

  41. Chen, J. et al. Interfacial interaction between FeOOH and Ni–Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis. ACS Catal. 8, 11342–11351 (2018).

    Article  CAS  Google Scholar 

  42. Friebel, D. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Hausmann, J. N. & Menezes, P. W. Effect of surface-adsorbed and intercalated (oxy)anions on the oxygen evolution reaction. Angew. Chem. Int. Ed. 61, e202207279 (2022).

    Article  CAS  Google Scholar 

  44. Li, N. et al. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films. Proc. Natl Acad. Sci. USA 114, 1486–1491 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xiao, H., Shin, H. & Goddard, W. A. III Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction. Proc. Natl Acad. Sci. USA 115, 5872–5877 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kuai, C. et al. Fully oxidized Ni–Fe layered double hydroxide with 100% exposed active sites for catalyzing oxygen evolution reaction. ACS Catal. 9, 6027–6032 (2019).

    Article  CAS  Google Scholar 

  47. Hu, A. et al. Manipulating interfacial dissolution–redeposition dynamics to resynthesize electrode surface chemistry. ACS Energy Lett. 7, 2588–2594 (2022).

    Article  CAS  Google Scholar 

  48. Zhang, Y., Hu, A., Maxey, E., Li, L. & Lin, F. Spatiotemporal visualization and chemical identification of the metal diffusion layer at the electrochemical interface. J. Electrochem. Soc. 169, 100512 (2022).

    Article  CAS  Google Scholar 

  49. Hu, A. et al. Uncovering phase transformation, morphological evolution, and nanoscale color heterogeneity in tungsten oxide electrochromic materials. J. Mater. Chem. A 8, 20000–20010 (2020).

    Article  CAS  Google Scholar 

  50. Zhang, Y. et al. Operando characterization and regulation of metal dissolution and redeposition dynamics near battery electrode surface. Nat. Nanotechnol. 18, 790–797 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Feng, C., She, X., Xiao, Y. & Li, Y. Direct detection of Fe(VI) water oxidation intermediates in an aqueous solution. Angew. Chem. Int. Ed. 62, e202218738 (2023).

    Article  CAS  Google Scholar 

  52. Hunter, B. M. et al. Trapping an iron(VI) water-splitting intermediate in nonaqueous media. Joule 2, 747–763 (2018).

    Article  CAS  Google Scholar 

  53. Yu, X. & Licht, S. Advances in electrochemical Fe(VI) synthesis and analysis. J. Appl. Electrochem. 38, 731–742 (2008).

    Article  CAS  Google Scholar 

  54. Kemner, K. M. et al. XAS investigations of Fe(VI). J. Synchrotron Radiat. 8, 949–951 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Saveleva, V. A. et al. Operando evidence for a universal oxygen evolution mechanism on thermal and electrochemical iridium oxides. J. Phys. Chem. Lett. 9, 3154–3160 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Drevon, D. et al. Uncovering the role of oxygen in Ni-Fe(OxHy) electrocatalysts using in situ soft X-ray absorption spectroscopy during the oxygen evolution reaction. Sci. Rep. 9, 1532 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Reith, L. et al. In situ detection of iron in oxidation states ≥ IV in cobalt-iron oxyhydroxide reconstructed during oxygen evolution reaction. Adv. Energy Mater. 13, 2203886 (2023).

    Article  CAS  Google Scholar 

  58. Lee, S., Bai, L. & Hu, X. Deciphering iron-dependent activity in oxygen evolution catalyzed by nickel-iron layered double hydroxide. Angew. Chem. Int. Ed. 59, 8072–8077 (2020).

    Article  CAS  Google Scholar 

  59. Lee, S., Banjac, K., Lingenfelder, M. & Hu, X. Oxygen isotope labeling experiments reveal different reaction sites for the oxygen evolution reaction on nickel and nickel iron oxides. Angew. Chem. Int. Ed. 58, 10295–10299 (2019).

    Article  CAS  Google Scholar 

  60. Medford, A. J. et al. Assessing the reliability of calculated catalytic ammonia synthesis rates. Science 345, 197–200 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Glowacki, A. T. XRF-MAPS (US Department of Energy, 2020)

  62. Webb, S. M. SIXPack a graphical user interface for XAS analysis using IFEFFIT. Phys. Scripta T115, 1011–1014 (2005).

    Article  CAS  Google Scholar 

  63. Newville, M. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Rad. 8, 322–324 (2001).

    Article  CAS  Google Scholar 

  64. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  65. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter. 54, 11169–11186 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Mathew, K., Kolluru, V. S. C., Mula, S., Steinmann, S. N. & Hennig, R. G. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 151, 234101 (2019).

    Article  PubMed  Google Scholar 

  67. Islam, S. M. R., Khezeli, F., Ringe, S. & Plaisance, C. An implicit electrolyte model for plane wave density functional theory exhibiting nonlinear response and a nonlocal cavity definition. J. Chem. Phys. 159, 234117 (2023).

    Article  CAS  PubMed  Google Scholar 

  68. Larsen, A. H. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter. 29, 273002 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The work at Virginia Tech was supported by Department of Chemistry start-up funds and the Institute for Critical Technology and Applied Science (F.L.). F.L. also acknowledges the seedling support from the Virginia Tech College of Science Strategic Initiative in Energy (03400) and the support from the Leo and Melva Harris Faculty Fellowship. L. Liu and H.X. gratefully acknowledge the financial support from the National Science Foundation Chemical Catalysis program (CHE-2102363) (H.X.) and the computational resource provided by Advanced Research Computing at Virginia Tech. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Contributions

F.L. and C.K. conceived the project. C.K. and F.L. designed the overall experiments. C.K., F.L. and L. Li developed the fluorescence imaging measurements. L. Liu and H.X. conducted the DFT calculations and microkinetic analysis. C.K. synthesized the materials and performed the characterization and electrochemical measurements. C.K. and Yan Zhang performed the soft-XAS and operando hXAS experiments with assistance from D.N. and D.S. The synchrotron XFM and HERFD experiments were performed by A.H., Yuxin Zhang and D.X. under the supervision of F.L. and L. Li. The hXAS measurements for key reference samples were performed by D.D. and G.D. The figures were prepared by C.K., L. Liu, H.X. and F.L., who also wrote the manuscript with assistance from all co-authors. All of the co-authors participated in the scientific discussion and approved the manuscript submission.

Corresponding authors

Correspondence to Chunguang Kuai, Hongliang Xin, Luxi Li or Feng Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–43, Notes 1–8 and Tables 1–3.

Supplementary Data 1

Supplementary structure (CIF) files

Supplementary Data 2

Data for Supplementary Fig. 7.

Source data

Source Data Fig. 1

Dynamic behaviour at the electrode–electrolyte interface.

Source Data Fig. 2

Dynamic local structural change of Fe species during the OER.

Source Data Fig. 3

Interaction between the electrode and the molecular Fe species.

Source Data Fig. 4

Mechanistic understanding and schematic illustration of the SMM.

Source Data Fig. 5

OER performance of the MNF catalysts with and without the addition of iron gluconate to the electrolyte.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuai, C., Liu, L., Hu, A. et al. Dissolved Fe species enable a cooperative solid–molecular mechanism for the oxygen evolution reaction on NiFe-based catalysts. Nat Catal 8, 523–535 (2025). https://doi.org/10.1038/s41929-025-01342-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01342-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing