Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetric biomimetic aldol reaction of glycinate enables highly efficient synthesis of chiral β-hydroxy-α-amino acid derivatives

Abstract

Efficient biomimetic reactions provide a powerful platform for producing bioactive chiral compounds. Chiral β-hydroxy-α-amino acids display exceptionally high bioactivity and are key functional components of many marketed drugs. However, the efficient synthesis of chiral β-hydroxy-α-amino acids remains a long-standing challenge for both chemical and biological syntheses. Chemical synthesis is problematic due to low step- and atom-efficiencies, high costs and environmental hazards. The enzymatic aldol reaction of glycine can make β-hydroxy-α-amino acids in one step, but it is constrained by issues such as limited substrate scope, unsatisfactory stereoselectivity and low conversion. Here we have successfully realized the biomimetic aldol reaction of glycinate with aldehydes, using 0.01–1.0 mol% of a chiral pyridoxal as the catalyst to produce a remarkably broad range of chiral β-hydroxy-α-amino esters. Moreover, a high-diversity parallel asymmetric synthesis has also been tested using over 1,100 aldehydes and it yielded over 1,700 chiral β-hydroxy-α-amino acid esters, demonstrating its important potential for drug innovation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methods for synthesizing chiral β-hydroxy-α-amino acids.
Fig. 2: Catalyst screening for asymmetric aldol reaction of glycinate.
Fig. 3: Substrate scope.
Fig. 4: Synthetic utility and mechanistic studies.
Fig. 5: High-diversity parallel asymmetric synthesis.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the Article and its Supplementary Information or from the corresponding authors upon reasonable request. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 2353485 [(2R,3S)-4a in Supplementary Fig. 6) and CCDC 2353487 ((2R,3S)-4an in Supplementary Fig. 7). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Calcaterra, A. & D’Acquarica, I. The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds. J. Pharm. Biomed. Anal. 147, 323–340 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Dückers, N., Baer, K., Simon, S., Gröger, H. & Hummel, W. Threonine aldolases—screening, properties and applications in the synthesis of non-proteinogenic β-hydroxy-α-amino acids. Appl. Microbiol. Biotechnol. 88, 409–424 (2010).

    Article  PubMed  Google Scholar 

  3. He, Y. et al. Discovery and engineering of the l-threonine aldolase from neptunomonas marine for the efficient synthesis of β-hydroxy-α-amino acids via C–C formation. ACS Catal. 13, 7210–7220 (2023).

    Article  CAS  Google Scholar 

  4. Dowling, P. M. Chloramphenicol, Thiamphenicol, and Florfenicol. in Antimicrobial Therapy in Veterinary Medicine (eds Giguère S., Prescott J. F. & Dowling P. M.) 269–277 (Wiley-Blackwell, 2013).

  5. Zhang, Q.-Q., Ying, G.-G., Pan, C.-G., Liu, Y.-S. & Zhao, J.-L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ. Sci. Technol. 49, 6772–6782 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Mathias, C. J. l-Dihydroxyphenylserine (Droxidopa) in the treatment of orthostatic hypotension. Clin. Auton. Res. 18, 25–29 (2008).

    Article  PubMed  Google Scholar 

  7. Bennett, L. & Turcotte, K. Eliglustat tartrate for the treatment of adults with type 1 Gaucher disease. Drug Des. Dev. 9, 4639–4647 (2015).

    CAS  Google Scholar 

  8. Hossion, A. G. (ed) Vancomycin: Biosynthesis, Clinical Uses and Adverse Effects (Nova Science Publishers, 2013).

  9. Selvam, S. P. & Ogretmen, B. Sphingolipids in Disease (eds Gulbins, E. & Petrache, I.) 3–27 (Springer, 2013).

  10. Pu, Y., Lowe, C., Sailer, M. & Vederas, J. C. Synthesis, stability, and antimicrobial activity of (+)-obafluorin and related β-lactone antibiotics. J. Org. Chem. 59, 3642–3655 (1994).

    Article  CAS  Google Scholar 

  11. Ōmura, S. & Crump, A. Lactacystin: first-in-class proteasome inhibitor still excelling and an exemplar for future antibiotic research. J. Antibiot. 72, 189–201 (2019).

    Article  Google Scholar 

  12. Zhang, Y., Farrants, H. & Li, X. Adding a functional handle to nature′s building blocks: the asymmetric synthesis of β‐hydroxy‐α‐amino acids. Chem. Asian J. 9, 1752–1764 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Luo, Y.-C., Zhang, H.-H., Wang, Y. & Xu, P.-F. Synthesis of α-amino acids based on chiral tricycloiminolactone derived from natural (+)-camphor. Acc. Chem. Res. 43, 1317–1330 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Ooi, T., Taniguchi, M., Kameda, M. & Maruoka, K. Direct asymmetric aldol reactions of glycine schiff base with aldehydes catalyzed by chiral quaternary ammonium salts. Angew. Chem. Int. Ed. 41, 4542–4544 (2002).

    Article  CAS  Google Scholar 

  15. Li, L., Klauber, E. G. & Seidel, D. Catalytic enantioselective aldol additions of α-isothiocyanato imides to aldehydes. J. Am. Chem. Soc. 130, 12248–12249 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Sladojevich, F., Trabocchi, A., Guarna, A. & Dixon, D. J. A new family of cinchona-derived amino phosphine precatalysts: application to the highly enantio- and diastereoselective silver-catalyzed isocyanoacetate aldol reaction. J. Am. Chem. Soc. 133, 1710–1713 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Trost, B. M. & Miege, F. Development of prophenol ligands for the diastereo- and enantioselective synthesis of β-hydroxy-α-amino esters. J. Am. Chem. Soc. 136, 3016–3019 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seiple, I. B., Mercer, J. A. M., Sussman, R. J., Zhang, Z. & Myers, A. G. Stereocontrolled synthesis of syn‐β‐hydroxy‐α‐amino acids by direct aldolization of pseudoephenamine glycinamide. Angew. Chem. Int. Ed. 53, 4642–4647 (2014).

    Article  CAS  Google Scholar 

  19. Franz, S. E. & Stewart, J. D. Chapter three - threonine aldolases. Adv. Appl. Microbiol. 88, 57–101 (2014).

    Article  PubMed  Google Scholar 

  20. Kimura, T., Vassilev, V. P., Shen, G.-J. & Wong, C.-H. Enzymatic synthesis of β-hydroxy-α-amino acids based on recombinant d- and l-threonine aldolases. J. Am. Chem. Soc. 119, 11734–11742 (1997).

    Article  CAS  Google Scholar 

  21. Steinreiber, J. et al. Synthesis of γ-halogenated and long-chain β-hydroxy-α-amino acids and 2-amino-1,3-diols using threonine aldolases. Tetrahedron 63, 8088–8093 (2007).

    Article  CAS  Google Scholar 

  22. Goldberg, S. L. et al. Preparation of β-hydroxy-α-amino acid using recombinant d-threonine aldolase. Org. Process Res. Dev. 19, 1308–1316 (2015).

    Article  CAS  Google Scholar 

  23. Beaudoin, S. F., Hanna, M. P., Ghiviriga, I. & Stewart, J. D. Progress in using threonine aldolases for preparative synthesis. Enzym. Microb. Technol. 119, 1–9 (2018).

    Article  CAS  Google Scholar 

  24. Cai, B. et al. Computer-aided directed evolution of l-threonine aldolase for asymmetric biocatalytic synthesis of a chloramphenicol intermediate. Bioorg. Med. Chem. 68, 116880–116889 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, Q. et al. Improving and inverting Cβ-stereoselectivity of threonine aldolase via substrate-binding-guided mutagenesis and a stepwise visual screening. ACS Catal. 9, 4462–4469 (2019).

    Article  CAS  Google Scholar 

  26. Zheng, W. et al. Directed evolution of l-threonine aldolase for the diastereoselective synthesis of β-hydroxy-α-amino acids. ACS Catal. 11, 3198–3205 (2021).

    Article  CAS  Google Scholar 

  27. Wu, G. Z., Schumacher, D. P., Tormos, W., Clark, J. E. & Murphy, B. L. An improved industrial synthesis of florfenicol plus an enantioselective total synthesis of thiamphenicol and florfenicol. J. Org. Chem. 62, 2996–2998 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Guan, Y.-Q., Gao, M., Deng, X., Lv, H. & Zhang, X. Rhodium-catalyzed asymmetric hydrogenation of tetrasubstituted β-acetoxy-α-enamido esters and efficient synthesis of droxidopa. Chem. Commun. 53, 8136–8139 (2017).

    Article  CAS  Google Scholar 

  29. Sun, G. et al. Development of an efficient and scalable asymmetric synthesis of eliglustat via ruthenium(II)-catalyzed asymmetric transfer hydrogenation. Org. Process Res. Dev. 23, 1204–1212 (2019).

    Article  CAS  Google Scholar 

  30. Akiyama, H., Tobiki, H., Mitani, T., Miura, Y. & Suzuki, H. Microbiocidal d-threo-1-(p-methylsulfonylphenyl)-2-(dichloroacetamido)propane-1,3-diol. DE patent 1,938,513 (1970).

  31. Tobiki, H., Okamoto, T. & Akiyama, H. Process for producing β-phenylserine copper complex. US patent 3,927,054 (1975).

  32. Pimplaskar, H., Kadam, S. V., Mallesh, V. & Kawale, P. M. Method for the synthesis of droxidopa. WO patent 2,013,142,093 (2013).

  33. Teng, H., Chen, K., Wang, L., Wu, J. & Xu, G. Rational immobilization of 1-threonine aldolase from Bacillus nealsonii for efficiently synthesis of 1-syn-3-[4-(methylsulfonyl)] phenylserine. Process Biochem. 130, 685–694 (2023).

    Article  CAS  Google Scholar 

  34. Zha, R. et al. Improving the Cβ stereoselectivity of l-threonine aldolase for the preparation of l-threo-3,4-dihydroxyphenylserine, a powerful anti-Parkinson’s disease drug. Biochem. Eng. J. 191, 108766–108772 (2023).

    Article  CAS  Google Scholar 

  35. Hughes, D. L. Highlights of the recent patent literature─focus on biocatalysis innovation. Org. Process Res. Dev. 26, 1878–1899 (2022).

    Article  CAS  Google Scholar 

  36. Kuzuhara, H., Watanabe, N. & Ando, M. Asymmetric synthesis of allo-threonine and threonine; the use of a chiral pyridoxal–like pyridinophane-zinc complex as an enzyme mimic. J. Chem. Soc. Chem. Commun. 95–96 (1987).

  37. Koh, J. T., Delaude, L. & Breslow, R. Geometric control of a pyridoxal-catalyzed aldol condensation. J. Am. Chem. Soc. 116, 11234–11240 (1994).

    Article  CAS  Google Scholar 

  38. Chen, J. et al. Carbonyl catalysis enables a biomimetic asymmetric Mannich reaction. Science 360, 1438–1442 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Cheng, A. et al. Efficient asymmetric biomimetic aldol reaction of glycinates and trifluoromethyl ketones by carbonyl catalysis. Angew. Chem. Int. Ed. 60, 20166–20172 (2021).

    Article  CAS  Google Scholar 

  40. Xiao, X. & Zhao, B. Vitamin B6-based biomimetic asymmetric catalysis. Acc. Chem. Res. 56, 1097–1117 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Li, B.-J., Ei-Nachef, C. & Beauchemin, A. M. Organocatalysis using aldehydes: the development and improvement of catalytic hydroaminations, hydrations and hydrolyses. Chem. Commun. 53, 13192–13204 (2017).

    Article  CAS  Google Scholar 

  42. Wang, Q., Gu, Q. & You, S. L. Enantioselective carbonyl catalysis enabled by chiral aldehydes. Angew. Chem. Int. Ed. 58, 6818–6825 (2019).

    Article  CAS  Google Scholar 

  43. Wen, W. & Guo, Q.-X. Chiral aldehyde catalysis-enabled asymmetric α-functionalization of activated primary amines. Acc. Chem. Res. 57, 776–794 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. Fesko, K. Comparison of l-threonine aldolase variants in the aldol and retro-aldol reactions. Front. Bioeng. Biotechnol. 7, 119–130 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tanner, M. E. Understanding nature’s strategies for enzyme-catalyzed racemization and epimerization. Acc. Chem. Res. 35, 237–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Hou, C. et al. Catalytic asymmetric α C(sp3)–H addition of benzylamines to aldehydes. Nat. Catal. 5, 1061–1068 (2022).

    Article  CAS  Google Scholar 

  47. Crugeiras, J., Rios, A., Riveiros, E. & Richard, J. P. Substituent effects on electrophilic catalysis by the carbonyl group: anatomy of the rate acceleration for PLP-catalyzed deprotonation of glycine. J. Am. Chem. Soc. 133, 3173–3183 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Alemán, J., Parra, A., Jiang, H. & Jørgensen, K. A. Squaramides: bridging from molecular recognition to bifunctional organocatalysis. Chem. Eur. J. 17, 6890–6899 (2011).

    Article  PubMed  Google Scholar 

  49. Doyle, A. G. & Jacobsen, E. N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev. 107, 5713–5743 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Park, S.-H. et al. Cβ-Selective aldol addition of d-threonine aldolase by spatial constraint of aldehyde binding. ACS Catal. 11, 6892–6899 (2021).

    Article  CAS  Google Scholar 

  51. Dalko, P. I. & Moisan, L. Enantioselective organocatalysis. Angew. Chem. Int. Ed. 40, 3726–3748 (2001).

    Article  CAS  Google Scholar 

  52. List, B. Introduction: organocatalysis. Chem. Rev. 107, 5413–5415 (2007).

    Article  CAS  Google Scholar 

  53. MacMillan, D. W. C. The advent and development of organocatalysis. Nature 455, 304–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Meng, G. et al. Modular click chemistry libraries for functional screens using a diazotizing reagent. Nature 574, 86–89 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Zhu, L. & Wang, D. Deciphering the cooperative effect of base and N-substituents on the origin of enantioselectivity switching for Mannich reactions of glycinate by carbonyl catalysts. J. Catal. 415, 1–11 (2022).

    Article  CAS  Google Scholar 

  56. Han, L.-L. et al. The chiral pyridoxal-catalyzed biomimetic Mannich reaction: the mechanism and origin of stereoselectivity. Org. Chem. Front. 9, 4401–4410 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the generous financial support from the National Key R&D Program of China (2023YFA1506400, B.Z. and X.X.), the National Natural Science Foundation of China (NSFC) (22271192, B.Z.; 22471171, X.X.; 22403065, S.L.), the Shanghai Municipal Science and Technology Major Project (B.Z.) and the Shanghai Engineering Research Center of Green Energy Chemical Engineering (18DZ2254200, B.Z.).

Author information

Authors and Affiliations

Authors

Contributions

B.Z. conceived and directed the project and wrote the manuscript. X.X. co-directed the project and co-wrote the manuscript. K.D. co-directed the project. H.L. conducted most of the experiments. P.R. conducted part of the optimization of conditions. P.R. and L.W. conducted the synthesis of catalysts and racemic products. H.L., P.R., D.C. and S.G. conducted the high-diversity parallel asymmetric synthesis in Fig. 5 and prepared the Supplementary Information. S.L. conducted the DFT calculation of transition states.

Corresponding authors

Correspondence to Xiao Xiao or Baoguo Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Luca Bernardi, Donghui Wei and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Tables 1–12, Methods and References.

Supplementary Data 1

The .cif file of compound (2R,3S)-4a (CCDC 2353485).

Supplementary Data 2

The .cif file of compound (2R,3S)-4an (CCDC 2353487).

Supplementary Data 3

The calculation data for the transition state of (2R,3S)-4a.

Supplementary Data 4

The calculation data for the transition state of (2R,3R)-4a.

Supplementary Data 5

The calculation data for the transition state of (2S,3R)-4a.

Supplementary Data 6

The calculation data for the transition state of (2S,3S)-4a.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Ren, P., Wang, L. et al. Asymmetric biomimetic aldol reaction of glycinate enables highly efficient synthesis of chiral β-hydroxy-α-amino acid derivatives. Nat Catal 8, 668–677 (2025). https://doi.org/10.1038/s41929-025-01364-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01364-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing