Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioselective Pd-catalysed nucleophilic C(sp3)–H (radio)fluorination

Abstract

Despite increasing demand for chiral fluorinated organic molecules, enantioselective C–H fluorination remains among the most challenging and sought-after transformations in organic synthesis. Furthermore, utilizing nucleophilic sources of fluorine is especially desirable for 18F-radiolabelling. To date, methods for enantioselective nucleophilic fluorination of inert C(sp3)–H bonds remain unknown. Here we report our design and development of a palladium-based catalytic system bearing bifunctional monoprotected amino sulfonamide ligands which enabled highly regio- and enantioselective nucleophilic β-C(sp3)–H fluorination of synthetically important amides and lactams, commonly present in medicinal targets. The enantioenriched fluorinated products can be rapidly converted to corresponding chiral amines and ketones which are building blocks for a wide range of bioactive scaffolds. Mechanistic studies suggest that the C–F bond formation proceeds via outer-sphere reductive elimination with direct incorporation of fluoride, which was applied to late-stage 18F-radiolabelling of pharmaceutical derivatives using [18F]KF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic C(sp3)–H fluorination strategies.
Fig. 2: Ligand optimization of the enantioselective C(sp3)–H nucleophilic fluorination.
Fig. 3: Scope of ligand-enabled desymmetrization via nucleophilic C(sp3)–H fluorination.
Fig. 4: Scope of kinetic resolution via ligand-enabled nucleophilic C(sp3)–H fluorination.
Fig. 5: Applications of enantioselective fluorination and radiochemistry studies.
Fig. 6: Mechanistic and computational studies.

Similar content being viewed by others

Data availability

Crystallographic data for compound (S)-2b are available in the Supplementary Information files and from the Cambridge Crystallographic Data Centre under deposition number CCDC 2211757. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Cartesian coordinates (Å) for the computed structures are provided in the xyz file. All other data are available from the authors upon reasonable request.

References

  1. Müller, K., Faeh, C. & Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science 317, 1881–1886 (2007).

    Article  PubMed  Google Scholar 

  2. Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37, 320–330 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Gillis, E. P., Eastman, K. J., Hill, M. D., Donnelly, D. J. & Meanwell, N. A. Applications of fluorine in medicinal chemistry. J. Med. Chem. 58, 8315–8359 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Inoue, M., Sumii, Y. & Shibata, N. Contribution of organofluorine compounds to pharmaceuticals. ACS Omega 5, 10633–10640 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, Q. et al. FDA approved fluorine-containing drugs in 2023. Chin. Chem. Lett. 35, 109780 (2024).

    Article  CAS  Google Scholar 

  6. Britton, R. et al. Contemporary synthetic strategies in organofluorine chemistry. Nat. Rev. Methods Primers 1, 47 (2021).

    Article  CAS  Google Scholar 

  7. Caron, S. Where does the fluorine come from? A review on the challenges associated with the synthesis of organofluorine compounds. Org. Process Res. Dev. 24, 470–480 (2020).

    Article  CAS  Google Scholar 

  8. Patel, C. et al. Fluorochemicals from fluorspar via a phosphate-enabled mechanochemical process that bypasses HF. Science 381, 302–306 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Khandelwal, M., Pemawat, G. & Kanwar Khangarot, R. Recent developments in nucleophilic fluorination with potassium fluoride (KF): a review. Asian J. Org. Chem. 11, e202200325 (2022).

    Article  CAS  Google Scholar 

  10. Leibler, I. N. M., Gandhi, S. S., Tekle-Smith, M. A. & Doyle, A. G. Strategies for nucleophilic C(sp3)-(radio)fluorination. J. Am. Chem. Soc. 145, 9928–9950 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Ametamey, S. M., Honer, M. & Schubiger, P. A. Molecular imaging with PET. Chem. Rev. 108, 1501–1516 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Halder, R. & Ritter, T. 18F-Fluorination: challenge and opportunity for organic chemists. J. Org. Chem. 86, 13873–13884 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wright, J. S., Sharninghausen, L. S., Lapsys, A., Sanford, M. S. & Scott, P. J. H. C–H labeling with [18F]fluoride: an emerging methodology in radiochemistry. ACS Cent. Sci. 10, 1674–1688 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luu, T. G. & Kim, H.-K. Recent progress on radiofluorination using metals: strategies for generation of C–18F bonds. Org. Chem. Front. 10, 5746–5781 (2023).

    Article  CAS  Google Scholar 

  15. Li, B., Xu, M., Feng, P. & Xu, S. Electrochemical construction of C–F bonds: recent advances and future perspectives. Eur. J. Org. Chem. 27, e202400605 (2024).

    Article  CAS  Google Scholar 

  16. Bui, T. T., Hong, W. P. & Kim, H. K. Recent advances in visible light-mediated mluorination. J. Fluor. Chem. 247, 109794 (2021).

    Article  CAS  Google Scholar 

  17. Bui, T. T. & Kim, H. K. Recent advances in photo-mediated radiofluorination. Chem. Asian J. 16, 2155–2167 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Hollingworth, C. & Gouverneur, V. Transition metal catalysis and nucleophilic fluorination. Chem. Commun. 48, 2929–2942 (2012).

    Article  CAS  Google Scholar 

  19. Campbell, M. G. & Ritter, T. Modern carbon–fluorine bond forming reactions for aryl fluoride synthesis. Chem. Rev. 115, 612–633 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Watson, D. A. et al. Formation of ArF from LPdAr(F): catalytic conversion of aryl triflates to aryl fluorides. Science 325, 1661–1664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pupo, G. et al. Asymmetric nucleophilic fluorination under hydrogen bonding phase-transfer catalysis. Science 360, 638–642 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Banik, S. M., Medley, J. W. & Jacobsen, E. N. Catalytic, asymmetric difluorination of alkenes to generate difluoromethylated stereocenters. Science 353, 51–54 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Molnár, I. G. & Gilmour, R. Catalytic difluorination of olefins. J. Am. Chem. Soc. 138, 5004–5007 (2016).

    Article  PubMed  Google Scholar 

  24. Wu, T., Yin, G. & Liu, G. Palladium-catalyzed intramolecular aminofluorination of unactivated alkenes. J. Am. Chem. Soc. 131, 16354–16355 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Szpera, R., Moseley, D. F. J., Smith, L. B., Sterling, A. J. & Gouverneur, V. The fluorination of C–H bonds: developments and perspectives. Angew. Chem. Int. Ed. 58, 14824–14848 (2019).

    Article  CAS  Google Scholar 

  26. Chen, W. et al. Direct arene C–H fluorination with 18F via organic photoredox catalysis. Science 364, 1170–1174 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Truong, T., Klimovica, K. & Daugulis, O. Copper-catalyzed, directing group-assisted fluorination of arene and heteroarene C–H bonds. J. Am. Chem. Soc. 135, 9342–9345 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Furuya, T. et al. Mechanism of C–F reductive elimination from palladium(IV) fluorides. J. Am. Chem. Soc. 132, 3793–3807 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McMurtrey, K. B., Racowski, J. M. & Sanford, M. S. Pd-catalyzed C–H fluorination with nucleophilic fluoride. Org. Lett. 14, 4094–4097 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Atkins, A. P., Dean, A. C. & Lennox, A. J. J. Benzylic C(sp3)–H fluorination. Beilstein J. Org. Chem. 20, 1527–1547 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Braun, M. & Doyle, A. G. Palladium-catalyzed allylic C–H fluorination. J. Am. Chem. Soc. 135, 12990–12993 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Chatalova-Sazepin, C., Hemelaere, R., Paquin, J. F. & Sammis, G. M. Recent advances in radical fluorination. Synthesis 47, 2554–2569 (2015).

    Article  CAS  Google Scholar 

  33. Liu, W. et al. Oxidative aliphatic C–H fluorination with fluoride ion catalyzed by a manganese porphyrin. Science 337, 1322–1325 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, W. & Groves, J. T. Manganese-catalyzed oxidative benzylic C–H fluorination by fluoride ions. Angew. Chem. Int. Ed. 52, 6024–6027 (2013).

    Article  CAS  Google Scholar 

  35. Bafaluy, D., Georgieva, Z. & Muñiz, K. Iodine catalysis for C(sp3)–H fluorination with a nucleophilic fluorine source. Angew. Chem. Int. Ed. 59, 14241–14245 (2020).

    Article  CAS  Google Scholar 

  36. Leibler, I. N. M., Tekle-Smith, M. A. & Doyle, A. G. A general strategy for C(sp3)-H functionalization with nucleophiles using methyl radical as a hydrogen atom abstractor. Nat. Commun. 12, 6950 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mal, S., Jurk, F., Hiesinger, K. & van Gemmeren, M. Pd-catalysed direct β-C(sp3)–H fluorination of aliphatic carboxylic acids. Nat. Synth. 3, 1292–1298 (2024).

    Article  CAS  Google Scholar 

  38. Park, H., Verma, P., Hong, K. & Yu, J. Q. Controlling Pd(IV) reductive elimination pathways enables Pd(II)-catalysed enantioselective C(sp3)–H fluorination. Nat. Chem. 10, 755–762 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu, R. Y. et al. Ligand-enabled stereoselective β-C(sp3)–H fluorination: synthesis of unnatural enantiopure anti-β-fluoro-α-amino acids. J. Am. Chem. Soc. 137, 7067–7070 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Q., Yin, X. S., Chen, K., Zhang, S. Q. & Shi, B. F. Stereoselective synthesis of chiral β-fluoro α-amino acids via Pd(II)-catalyzed fluorination of unactivated methylene C(sp3)–H bonds: scope and mechanistic studies. J. Am. Chem. Soc. 137, 8219–8226 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Nagib, D. A. Catalytic desymmetrization by C–H functionalization as a solution to the chiral methyl problem. Angew. Chem. Int. Ed. 56, 7354–7356 (2017).

    Article  CAS  Google Scholar 

  42. Goodhue, C. T. & Schaeffer, J. R. Preparation of l (+)‐β‐hydroxyisobutyric acid by bacterial oxidation of isobutyric acid. Biotechnol. Bioeng. 13, 203–214 (1971).

    Article  CAS  PubMed  Google Scholar 

  43. Engle, K. M., Mei, T. S., Wang, X. & Yu, J. Q. Bystanding F+ oxidants enable selective reductive elimination from high-valent metal centers in catalysis. Angew. Chem. Int. Ed. 50, 1478–1491 (2011).

    Article  CAS  Google Scholar 

  44. Yuan, C., Wang, X. & Jiao, L. Ligand‐enabled palladium(II)‐catalyzed enantioselective β‐C(sp3)–H arylation of aliphatic tertiary amides. Angew. Chem. Int. Ed. 62, e202300854 (2023).

    Article  CAS  Google Scholar 

  45. Saint-Denis, T. G., Zhu, R.-Y., Chen, G., Wu, Q.-F. & Yu, J.-Q. Enantioselective C(sp3)‒H bond activation by chiral transition metal catalysts. Science 359, eaao4798 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Saint-Denis, T. G. et al. Mechanistic study of enantioselective Pd-catalyzed C(sp3)–H activation of thioethers involving two distinct stereomodels. ACS Catal. 11, 9738–9753 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheng, G. J. et al. A combined IM-MS/DFT study on [Pd(MPAA)]-catalyzed enantioselective C–H activation: relay of chirality through a rigid framework. Chem. Eur. J. 21, 11180–11188 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Thompson, S. et al. Synthesis of [18F]-γ-fluoro-α,β-unsaturated esters and ketones via vinylogous 18F-fluorination of α-diazoacetates with [18F]AgF. Synthesis 51, 4401–4407 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Donnelly, D. J. et al. Synthesis and biologic evaluation of a novel 18F-labeled adnectin as a PET radioligand for imaging PD-L1 expression. J. Nucl. Med. 59, 529–535 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Brandt, J. R., Lee, E., Boursalian, G. B. & Ritter, T. Mechanism of electrophilic fluorination with Pd(IV): fluoride capture and subsequent oxidative fluoride transfer. Chem. Sci. 5, 169–179 (2014).

    Article  CAS  Google Scholar 

  51. Katcher, M. H., Norrby, P. O. & Doyle, A. G. Mechanistic investigations of palladium-catalyzed allylic fluorination. Organometallics 33, 2121–2133 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge The Scripps Research Institute, the NIH (NIGMS, 2R01GM084019) and Bristol Myers Squibb for financial support. We thank D. Strassfeld and Y.-H. Li for proofreading and help with editing the manuscript. We thank T. Sheng and Y.-H. Li for help with spectral data analysis. We thank J. Lee, B. Sanchez, Q. N. Wong, J. Smith and J. Chen of the Scripps Research Automated Synthesis Facility for their assistance with SFC and LC-MS analysis and for help with compound purification. We thank M. Gembicky, J. Bailey and the University of California San Diego Crystallography Facility for X-ray crystallographic analysis and the Scripps Research High Performance Computing facility for computational resources.

Author information

Authors and Affiliations

Authors

Contributions

J.-Q.Y. conceived the concept. N.C. discovered and developed the enantioselective fluorination and L.-Y.L. discovered and developed the nucleophilic fluorination conditions. D.Q.P. designed MPASA ligands and prepared the corresponding library. D.J.D. performed radiochemistry studies. L.-Y.L. and N.C. developed the racemic fluorination substrate scope. N.C. developed the enantioselective fluorination substrate scope and product derivatization. Y.O. assisted with enantioselective fluorination scope development. N.C. performed mechanistic and computational studies. J.X.Q. and K.-S.Y. provided discussions and assistance in substrate screening. N.C. and J.-Q.Y. wrote the manuscript. J.-Q.Y. directed the project.

Corresponding author

Correspondence to Jin-Quan Yu.

Ethics declarations

Competing interests

N.C., D.Q.P., Y.O. and J.-Q.Y. are inventors on a patent application related to this work (USSN patent application 63/797,339) filed by The Scripps Research Institute. D.J.D., K.-S.Y. and J.X.Q. are employees of Bristol Myers Squibb. The authors declare no other competing interests.

Peer review

Peer review information

Nature Catalysis thanks Hee-Kwon Kim, Biplab Maji, Yun-Dong Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figs.1–34, Tables 1–31 and References.

Crystallographic Data 1

X-ray structure of 2b.

Computational Data 1

Cartesian coordinates of computed structures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chekshin, N., Liu, LY., Phan, D.Q. et al. Enantioselective Pd-catalysed nucleophilic C(sp3)–H (radio)fluorination. Nat Catal 8, 678–687 (2025). https://doi.org/10.1038/s41929-025-01366-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01366-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing