Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Decreased thickness of the individually-mapped genital cortex after childhood sexual abuse exposure in adult women
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 19 February 2026

Decreased thickness of the individually-mapped genital cortex after childhood sexual abuse exposure in adult women

  • Yuliya Kovalchuk1,2,
  • Sydney Schienbein1 na1,
  • Andrea J. J. Knop1 na1,
  • Martin Bauer  ORCID: orcid.org/0000-0002-3120-74051,3,
  • Stephanie Spengler1,
  • Michael Brecht  ORCID: orcid.org/0000-0002-5387-09532,4,5,6,
  • John-Dylan Haynes2,4,7,8 &
  • …
  • Christine Heim  ORCID: orcid.org/0000-0002-6580-63261,2,6,9 

Communications Biology , Article number:  (2026) Cite this article

  • 115 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cortex
  • Risk factors

Abstract

Previous research suggests interindividual variability in the location of the genital representation field and use-associated structural variation of genital field thickness associated with normative sexual activity in adult women. Using a sensory-tactile fMRI paradigm, we individually mapped genital fields of 128 women with and without exposure to childhood sexual abuse. We assessed whether structural variation of the individual genital field is driven by exposure to childhood sexual abuse or sexual frequency in the past year. We show that exposure to childhood sexual abuse associated with reduced thickness of individually-mapped genital cortex. Earlier abuse onset predicted greater reductions of genital field thickness. There was no effect of sexual frequency in the past year on genital field thickness. Classic neuroplasticity research indicates amplifying effects of stimulation on sensory cortex. In contrast, our results show long-lasting damaging effects of inappropriate stimulation during early development, emphasizing the need to protect children from sexual adversity.

Similar content being viewed by others

Differential gray matter correlates and machine learning prediction of abuse and internalizing psychopathology in adolescent females

Article Open access 03 January 2025

A psychophysical and neuroimaging analysis of genital hedonic sensation in men

Article Open access 17 June 2022

Multifactorial approach is needed to unravel the maturation phases of human neurons derived from induced pluripotent stem cells

Article Open access 21 January 2025

Data availability

The raw neuroimaging datasets and behavioral data generated and/or analyzed during the current study are not publicly available due to our data privacy agreement and ethical restrictions that serve the right of our participants to remain anonymous and protect them from potential identification. Source data to support the findings of this study are available as a part of OSF preregistration54.

Code availability

Custom MATLAB Code (Version R2023b, MathWorks Inc.) for SPM12 and CAT 12, as well as custom code for R Project for Statistical Computing (RStudio 2023.12.0 Build 369) is available as a part of OSF preregistration54.

References

  1. Pascual-Leone, A., Amedi, A., Fregni, F. & Merabet, L. B. The plastic human brain cortex. Annu. Rev. Neurosci. 28, 377–401 (2005).

    Google Scholar 

  2. Hensch, T. K. Critical period regulation. Annu. Rev. Neurosci. 27, 549–579 (2004).

    Google Scholar 

  3. Wiesel, T. N. & Hubel, D. H. Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body. J. Neurophysiol. 26, 978–993 (1963).

    Google Scholar 

  4. Takesian, A. E. & Hensch, T. K. Balancing plasticity/stability across brain development. Prog. Brain Res. 207, 3–34 (2013).

  5. Barnes, S. J. & Finnerty, G. T. Sensory experience and cortical rewiring. Neuroscientist 16, 186–198 (2010).

    Google Scholar 

  6. Elbert, T. & Rockstroh, B. Reorganization of human cerebral cortex: the range of changes following use and injury. Neuroscientist 10, 129–141 (2004).

    Google Scholar 

  7. Flor, H. et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375, 482–484 (1995).

    Google Scholar 

  8. Lissek, S. et al. Immobilization impairs tactile perception and shrinks somatosensory cortical maps. Curr. Biol. 19, 837–842 (2009).

    Google Scholar 

  9. Lupien, S. J., McEwen, B. S., Gunnar, M. R. & Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434–445 (2009).

    Google Scholar 

  10. Teicher, M. H., Samson, J. A., Anderson, C. M. & Ohashi, K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat. Rev. Neurosci. 17, 652–666 (2016).

    Google Scholar 

  11. Tomoda, A., Polcari, A., Anderson, C. M. & Teicher, M. H. Reduced visual cortex gray matter volume and thickness in young adults who witnessed domestic violence during childhood. PLoS ONE 7, e52528 (2012).

    Google Scholar 

  12. Tomoda, A. et al. Exposure to parental verbal abuse is associated with increased gray matter volume in superior temporal gyrus. NeuroImage 54, S280–S286 (2011).

    Google Scholar 

  13. Noll, J. G. Child sexual abuse as a unique risk factor for the development of psychopathology: the compounded convergence of mechanisms. Annu. Rev. Clin. Psychol. 17, 439–464 (2021).

    Google Scholar 

  14. Heim, C., Ehlert, U., Rexhausen, J., Hanker, J. P. & Hellhammer, D. H. Psychoendocrinological observations in women with chronic pelvic paina. Ann. N. Y. Acad. Sci. 821, 456–458 (1997).

    Google Scholar 

  15. Heim, C. M., Mayberg, H. S., Mletzko, T., Nemeroff, C. B. & Pruessner, J. C. Decreased cortical representation of genital somatosensory field after childhood sexual abuse. AJP 170, 616–623 (2013).

    Google Scholar 

  16. Lenschow, C. & Brecht, M. Physiological and anatomical outputs of rat genital cortex. Cereb. Cortex 28, 1472–1486 (2018).

    Google Scholar 

  17. Lima, S. Q. Genital cortex: development of the genital homunculus. Curr. Biol. 29, R1122–R1124 (2019).

    Google Scholar 

  18. Lenschow, C., Sigl-Glöckner, J. & Brecht, M. Development of rat female genital cortex and control of female puberty by sexual touch. PLoS Biol. 15, e2001283 (2017).

    Google Scholar 

  19. Di Noto, P. M., Newman, L., Wall, S. & Einstein, G. The hermunculus: what is known about the representation of the female body in the brain? Cereb. Cortex 23, 1005–1013 (2013).

    Google Scholar 

  20. Cazala, F., Vienney, N. & Stoléru, S. The cortical sensory representation of genitalia in women and men: a systematic review. Socioaffective Neurosci. Psychol. 5, 26428 (2015).

    Google Scholar 

  21. Knop, A. J. J. et al. Sensory-tactile functional mapping and use-associated structural variation of the human female genital representation field. J. Neurosci. 42, 1131–1140 (2022).

    Google Scholar 

  22. Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).

    Google Scholar 

  23. Michels, L., Mehnert, U., Boy, S., Schurch, B. & Kollias, S. The somatosensory representation of the human clitoris: an fMRI study. NeuroImage 49, 177–184 (2010).

    Google Scholar 

  24. Kell, C. A., Von Kriegstein, K., Rösler, A., Kleinschmidt, A. & Laufs, H. The sensory cortical representation of the human penis: revisiting somatotopy in the male homunculus. J. Neurosci. 25, 5984–5987 (2005).

    Google Scholar 

  25. Luijten, S. P. R. et al. Single subject and group whole-brain fMRI mapping of male genital sensation at 7 Tesla. Sci. Rep. 10, 2487 (2020).

    Google Scholar 

  26. May, A. Experience-dependent structural plasticity in the adult human brain. Trends Cogn. Sci. 15, 475–482 (2011).

    Google Scholar 

  27. Noll, J. G., Trickett, P. K. & Putnam, F. W. A prospective investigation of the impact of childhood sexual abuse on the development of sexuality. J. Consulting Clin. Psychol. 71, 575–586 (2003).

    Google Scholar 

  28. Ortigue, S., Bianchi-Demicheli, F., Patel, N., Frum, C. & Lewis, J. W. Neuroimaging of love: fMRI meta-analysis evidence toward new perspectives in sexual medicine. J. Sex. Med. 7, 3541–3552 (2010).

    Google Scholar 

  29. Emanuele, E. et al. Raised plasma nerve growth factor levels associated with early-stage romantic love. Psychoneuroendocrinology 31, 288–294 (2006).

    Google Scholar 

  30. Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B. & Taub, E. Increased Cortical Representation of the Fingers of the Left Hand in String Players. Science 270, 305–307 (1995).

    Google Scholar 

  31. Schiffer, F. Teicher, M.H. & Papanicolaou, A.C. Evoked potential evidence for right brain activity during the recall of traumatic memories. J. Neuropsychiatry Clin. Neurosci. 7, 169–175 (1995).

  32. Braun, C. M. J., Dumont, M., Duval, J., Hamel, I. & Godbout, L. Opposed left and right brain hemisphere contributions to sexual drive: a multiple lesion case analysis. Behav. Neurol. 14, 55–61 (2003).

    Google Scholar 

  33. Schiffer, F., Zaidel, E., Bogen, J. & Chasan-Taber, S. Different psychological status in the two hemispheres of two split-brain patients. Neuropsychiatry Neuropsychol. Behav. Neurol. 11, 151–156 (1998).

    Google Scholar 

  34. Kropf, E., Syan, S. K., Minuzzi, L. & Frey, B. N. From anatomy to function: the role of the somatosensory cortex in emotional regulation. Braz. J. Psychiatry 41, 261–269 (2019).

    Google Scholar 

  35. Timmler, S. & Simons, M. Grey matter myelination. Glia 67, 2063–2070 (2019).

    Google Scholar 

  36. Duque, A., Arellano, J. I. & Rakic, P. An assessment of the existence of adult neurogenesis in humans and value of its rodent models for neuropsychiatric diseases. Mol. Psychiatry 27, 377–382 (2022).

    Google Scholar 

  37. Castro-Alamancos, M. A. Role of thalamocortical sensory suppression during arousal: focusing sensory inputs in neocortex. J. Neurosci. 22, 9651–9655 (2002).

    Google Scholar 

  38. Lendvai, B., Stern, E. A., Chen, B. & Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404, 876–881 (2000).

    Google Scholar 

  39. Croosu, S. S. et al. Alterations in functional connectivity of thalamus and primary somatosensory cortex in painful and painless diabetic peripheral neuropathy. Diab. Care 46, 173–182 (2023).

    Google Scholar 

  40. Ziegler, K. et al. Primary somatosensory cortex bidirectionally modulates sensory gain and nociceptive behavior in a layer-specific manner. Nat. Commun. 14, 2999 (2023).

    Google Scholar 

  41. Wagner, G., Koschke, M., Leuf, T., Schlösser, R. & Bär, K.-J. Reduced heat pain thresholds after sad-mood induction are associated with changes in thalamic activity. Neuropsychologia 47, 980–987 (2009).

    Google Scholar 

  42. Ma, J. et al. Convergent direct and indirect cortical streams shape avoidance decisions in mice via the midline thalamus. Nat. Commun. 15, 6598 (2024).

    Google Scholar 

  43. Kratzer, L. et al. Sexual symptoms in post-traumatic stress disorder following childhood sexual abuse: a network analysis. Psychol. Med. 52, 90–101 (2022).

    Google Scholar 

  44. Omona, K. & Ssanyu, B. S. Biology and Pathology of Cortisol in Sexual Dysfunctions. in Handbook of the Biology and Pathology of Mental Disorders (eds. Martin, C. R., Preedy, V. R., Patel, V. B. & Rajendram, R.) 1–24 (Springer International Publishing, Cham, 2024).

  45. Feldman, D. E. & Brecht, M. Map plasticity in somatosensory cortex. Science 310, 810–815 (2005).

    Google Scholar 

  46. Luders, E. et al. From baby brain to mommy brain: widespread gray matter gain after giving birth. Cortex 126, 334–342 (2020).

    Google Scholar 

  47. Ruehr, L. et al. Estrogens and human brain networks: a systematic review of structural and functional neuroimaging studies. Front. Neuroendocrinol. 77, 101174 (2025).

    Google Scholar 

  48. Lu, W. et al. Grey matter differences associated with age and sex hormone levels between premenopausal and perimenopausal women: a voxel-based morphometry study. J. Neuroendocrinol. 30, e12655 (2018).

    Google Scholar 

  49. Erpelding, N., Moayedi, M. & Davis, K. D. Cortical thickness correlates of pain and temperature sensitivity. Pain 153, 1602–1609 (2012).

    Google Scholar 

  50. Grant, J. A., Courtemanche, J., Duerden, E. G., Duncan, G. H. & Rainville, P. Cortical thickness and pain sensitivity in zen meditators. Emotion 10, 43–53 (2010).

    Google Scholar 

  51. Matuz-Budai, T. et al. Individual differences in the experience of body ownership are related to cortical thickness. Sci. Rep. 12, 808 (2022).

    Google Scholar 

  52. Dhawan, E. & Haggard, P. Neuroscience evidence counters a rape myth. Nat. Hum. Behav. 7, 835–838 (2023).

    Google Scholar 

  53. Dinse, H. R. & Tegenthoff, M. Evoking plasticity through sensory stimulation: Implications for learning and rehabilitation. e-Neuroforum 21, 11–20 (2015).

    Google Scholar 

  54. Kovalchuk, Y. et al. Use-Dependent Structural Variation of Female Genital Cortex after Sexual Abuse. (2024) https://doi.org/10.17605/OSF.IO/QWEFS.

  55. Wingenfeld, K. et al. Die deutsche Version des Childhood Trauma Questionnaire (CTQ): Erste Befunde zu den psychometrischen Kennwerten. Psychother. Psych. Med 60, 442–450 (2010).

    Google Scholar 

  56. Margraf, J., Cwik, J. C., Pflug, V. & Schneider, S. Strukturierte klinische Interviews zur Erfassung psychischer Störungen über die Lebensspanne: Gütekriterien und Weiterentwicklungen der DIPS-Verfahren. Z. f.ür. Klinische Psychologie und Psychotherapie 46, 176–186 (2017).

    Google Scholar 

  57. Isele, D. et al. KERF–Ein Instrument zur umfassenden Ermittlung belastender Kindheitserfahrungen: erstellung und psychometrische Beurteilung der deutschsprachigen MACE (Maltreatment and Abuse Chronology of Exposure) Scale. Z. f.ür. Klinische Psychologie und Psychotherapie 43, 121–130 (2014).

    Google Scholar 

  58. Gaser, C. et al. CAT: a computational anatomy toolbox for the analysis of structural MRI data. GigaScience 13, giae049 (2024).

    Google Scholar 

  59. Dahnke, R., Yotter, R. A. & Gaser, C. Cortical thickness and central surface estimation. NeuroImage 65, 336–348 (2013).

    Google Scholar 

  60. Dhamala, E. et al. Proportional intracranial volume correction differentially biases behavioral predictions across neuroanatomical features, sexes, and development. NeuroImage 260, 119485 (2022).

    Google Scholar 

Download references

Acknowledgements

Funded by NeuroCure Cluster of Excellence (Deutsche Forschungsgemeinschaft EXC 2049) collaboration grant to CH and MB and the Max Planck School of Cognition grant to CH and YK. Special thanks to Prof. Patrick Haggard, Dr. Laura Kuhle, Dr. Anna Konrad, Dr. Fiona O’Donovan, and Dr. Malvika Godara.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Author notes
  1. These authors contributed equally: Sydney Schienbein, Andrea J. J. Knop.

Authors and Affiliations

  1. Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany

    Yuliya Kovalchuk, Sydney Schienbein, Andrea J. J. Knop, Martin Bauer, Stephanie Spengler & Christine Heim

  2. Max Planck School of Cognition, Leipzig, Germany

    Yuliya Kovalchuk, Michael Brecht, John-Dylan Haynes & Christine Heim

  3. Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany

    Martin Bauer

  4. Bernstein Center for Computational Neuroscience, Berlin, Germany

    Michael Brecht & John-Dylan Haynes

  5. Humboldt-Universität zu Berlin, Department of Biology, Berlin, Germany

    Michael Brecht

  6. NeuroCure Cluster of Excellence, Berlin, Germany

    Michael Brecht & Christine Heim

  7. Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Center for Advanced Neuroimaging, Berlin, Germany

    John-Dylan Haynes

  8. Humboldt-Universität zu Berlin, Department of Psychology, Berlin, Germany

    John-Dylan Haynes

  9. German Center for Mental Health, Berlin Potsdam Partner Site, Berlin, Germany

    Christine Heim

Authors
  1. Yuliya Kovalchuk
    View author publications

    Search author on:PubMed Google Scholar

  2. Sydney Schienbein
    View author publications

    Search author on:PubMed Google Scholar

  3. Andrea J. J. Knop
    View author publications

    Search author on:PubMed Google Scholar

  4. Martin Bauer
    View author publications

    Search author on:PubMed Google Scholar

  5. Stephanie Spengler
    View author publications

    Search author on:PubMed Google Scholar

  6. Michael Brecht
    View author publications

    Search author on:PubMed Google Scholar

  7. John-Dylan Haynes
    View author publications

    Search author on:PubMed Google Scholar

  8. Christine Heim
    View author publications

    Search author on:PubMed Google Scholar

Contributions

C.H. and M.B.r. obtained funding; C.H. and J.D.H. conceptualized research; Y.K., S.S.c., A.K., S.S.p., and C.H. and implemented and performed research; M.B.a. and A.K. contributed to data analysis; Y.K. analyzed the data; Y.K. and C.H. wrote the paper. All authors edited the paper.

Corresponding author

Correspondence to Christine Heim.

Ethics declarations

Competing interests

The authors declare no competing financial interests

Peer review

Peer review information

Communications Biology thanks Barry R. Komisaruk and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Jasmine Pan.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalchuk, Y., Schienbein, S., Knop, A.J.J. et al. Decreased thickness of the individually-mapped genital cortex after childhood sexual abuse exposure in adult women. Commun Biol (2026). https://doi.org/10.1038/s42003-026-09627-6

Download citation

  • Received: 01 September 2025

  • Accepted: 20 January 2026

  • Published: 19 February 2026

  • DOI: https://doi.org/10.1038/s42003-026-09627-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing