Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Investigating Salmonella biofilm responses to antibiotic treatment using optical photothermal infrared spectroscopy
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 11 February 2026

Investigating Salmonella biofilm responses to antibiotic treatment using optical photothermal infrared spectroscopy

  • Daniel Smaje  ORCID: orcid.org/0009-0009-3788-61601,2,
  • Xiaojun Zhu3,
  • Jay C. D. Hinton  ORCID: orcid.org/0000-0003-2671-60263,
  • Rasmita Raval2,
  • Royston Goodacre  ORCID: orcid.org/0000-0003-2230-645X1 &
  • …
  • Howbeer Muhamadali  ORCID: orcid.org/0000-0002-1665-47171 

Communications Biology , Article number:  (2026) Cite this article

  • 607 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Antimicrobial resistance
  • Antimicrobials
  • Biofilms

Abstract

Biofilms are microbial communities of aggregated cells encased in extracellular matrix that are a pressing healthcare concern. Since biofilms have complex metabolic dynamics, in this study a new approach for studying biofilm metabolism is developed that employs optical-photothermal infrared (O-PTIR) spectroscopy imaging combined with 13C stable isotope probing and cryosectioning to track the carbon metabolism of cells at different depths of the biofilm. This approach demonstrated that metabolic gradients can be visualised using O-PTIR imaging, revealing a core of cells with low metabolic activity at the centre of the biofilm, with outer regions showing significantly higher metabolic activity. By incorporating the heavy stable isotope of carbon into bacterial biomass, we monitored the metabolic activity of gentamicin-resistant Salmonella Typhimurium within the biofilm structure upon exposure to various antibiotics. O-PTIR imaging revealed altered metabolic responses at various depths of the biofilm, with variations that depend on the bacterial antibiotic susceptibility profile.

Similar content being viewed by others

Biofilm formation and associated biomechanical traits co-segregate with multidrug resistance in typhoidal Salmonella

Article 03 February 2026

A novel time-lapse imaging method for studying developing bacterial biofilms

Article Open access 07 December 2022

Spatially structured exchange of metabolites enhances bacterial survival and resilience in biofilms

Article Open access 31 August 2024

Data availability

Data presented in this study can be obtained in the supplementary data, with the underlying data for graphs in Figs. 1–2 found in supplementary data 1, the underlying data for graphs in Figs. 3–4 found in supplementary data 2, and the underlying data for graphs in Figs. 5–6 found in supplementary data 3. All other data are available from the corresponding author on reasonable request.

References

  1. Hamilton, S. et al. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms. BMC Genomics 10, 1–21 (2009).

    Google Scholar 

  2. Harrell, J. E. et al. Salmonella biofilm formation, chronic infection, and immunity within the intestine and hepatobiliary tract. Front. Cell. Infect. Microbiol. 10, 624622 https://doi.org/10.3389/FCIMB.2020.624622 (2021).

  3. Jain, S. & Chen, J. Attachment and biofilm formation by various serotypes of salmonella as influenced by cellulose production and thin aggregative fimbriae biosynthesis. J. Food Prot. 70, 2473–2479 (2007).

    Google Scholar 

  4. Milho, C. et al. Escherichia coli and Salmonella Enteritidis dual-species biofilms: interspecies interactions and antibiofilm efficacy of phages. Sci. Rep. 9, 1–15 (2019).

  5. Wang, H., Ding, S., Wang, G., Xu, X. & Zhou, G. In situ characterization and analysis of Salmonella biofilm formation under meat processing environments using a combined microscopic and spectroscopic approach. Int. J. Food Microbiol. 167, 293–302 https://doi.org/10.1016/j.ijfoodmicro.2013.10.005 (2013).

    Google Scholar 

  6. Wei, K. et al. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J. 8, 894–907 (2013).

    Google Scholar 

  7. Werner, E. et al. Stratified growth in Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 70, 6188–6196 (2004).

    Google Scholar 

  8. Rani Suriani, A. et al. Spatial patterns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal diverse physiological states. J. Bacteriol. 189, 4223–4233 (2007).

    Google Scholar 

  9. Dayton, H. et al. Cellular arrangement impacts metabolic activity and antibiotic tolerance in Pseudomonas aeruginosa biofilms. PLoS Biol. 22, e3002205 (2024).

    Google Scholar 

  10. Walters, M. C., Roe, F., Bugnicourt, A., Franklin, M. J. & Stewart, P. S. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrobial Agents Chemother. 47, 317–323 (2003). https://doi.org/10.1128/AAC.47.1.317-323.2003

  11. Chua, S. L. et al. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms. Nat. Commun. 7, 10750 (2016).

    Google Scholar 

  12. Jo, J., Cortez, K. L., Cornell, W. C., Price-Whelan, A. & Dietrich, L. E. An orphan cbb 3-type cytochrome oxidase subunit supports Pseudomonas aeruginosa biofilm growth and virulence. Elife 6, e30205 (2017).

    Google Scholar 

  13. Flemming, H.-C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).

    Google Scholar 

  14. Sanchez, C. J. et al. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect. Dis. 13, 47 (2013).

    Google Scholar 

  15. Ding, L. et al. Targeted treatment for biofilm-based infections using PEGylated tobramycin. J. Controlled Rel. 372, 43–58 (2024).

    Google Scholar 

  16. Krüger, G. I. et al. Mobile genetic elements drive the multidrug resistance and spread of Salmonella serotypes along a poultry meat production line. Front. Microbiol. 14, 1072793 https://doi.org/10.3389/FMICB.2023.1072793/FULL (2023).

  17. Fux, C. A., Costerton, J. W., Stewart, P. S. & Stoodley, P. Survival strategies of infectious biofilms. Trends Microbiol. 13, 34–40 (2005).

    Google Scholar 

  18. O’Neill, J., Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Review on Antimicrobial Resistance. Wellcome Trust and HM Government (2016). Accessed at: https://amr-review.org/sites/defaultfiles/160525_Final%20paper_with%20cover.pdf.

  19. Balasubramanian, R. et al. The global burden and epidemiology of invasive non-typhoidal Salmonella infections. Hum. Vaccines Immunotherapeutics 15, 1421–1426 (2019).

    Google Scholar 

  20. Kim, S. H., Jyung, S. & Kang, D. H. Comparative study of Salmonella Typhimurium biofilms and their resistance depending on cellulose secretion and maturation temperatures. LWT 154, 112700–112700 (2022).

    Google Scholar 

  21. Dong, N. et al. The phenotypic and molecular characteristics of antimicrobial resistance of Salmonella enterica subsp. enterica serovar Typhimurium in Henan Province, China. BMC Infect. Dis. 20, 511 https://doi.org/10.1186/s12879-020-05203-3 (2020).

  22. Greeshma, S. S., Pillai, D. & Joseph, T. C. Multidrug resistance in salmonella serotypes across the globe: alarming rate of spread. 1-17 (Springer, 2023).

  23. Wang, X. et al. Antibiotic resistance in salmonella typhimurium isolates recovered from the food chain through national antimicrobial resistance monitoring system between 1996 and 2016. Front. Microbiol. 10, 985–985 (2019).

    Google Scholar 

  24. Vasicek, E. M. & Gunn, J. S. Invasive non-typhoidal Salmonella Lineage biofilm formation and gallbladder colonization vary but do not correlate directly with known biofilm-related mutations. Infect. Immun. 91, e00135-23 https://doi.org/10.1128/iai.00135-23 (2023).

  25. Albicoro Francisco, J. et al. Lactate promotes the biofilm-to-invasive-planktonic transition in Salmonella enterica serovar Typhimurium via the de novo purine pathway. Infect. Immun. 92, e00266–00224 (2024).

    Google Scholar 

  26. Vlamakis, H., Aguilar, C., Losick, R. & Kolter, R. Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev. 22, 945–945 (2008).

    Google Scholar 

  27. Dar, D., Dar, N., Cai, L. & Newman, D. K. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 373, eabi4882 (2021).

    Google Scholar 

  28. Aleksandrowicz, A. et al. Better together–Salmonella biofilm-associated antibiotic resistance. Gut Microbes 15, 2229937 (2023).

    Google Scholar 

  29. Namazoğlu, B., Aksoy, M., Memiş-Özgül, B. & Tulga-Öz, F. Anti-microbial efficiency of gaseous ozone’s combined use with fluoride and chlorhexidine on time-related oral biofilm: an: in situ: study on pediatric patients. Med. Gas. Res. 13, 192–197 (2023).

    Google Scholar 

  30. Mountcastle, S. E. et al. Biofilm viability checker: an open-source tool for automated biofilm viability analysis from confocal microscopy images. npj Biofilms Microbiomes 7, 44 (2021).

    Google Scholar 

  31. Gu, Y.-Q., Li, T.-T. & Li, H.-Q. Biofilm formation monitored by confocal laser scanning microscopy during startup of MBBR operated under different intermittent aeration modes. Process Biochem. 74, 132–140 (2018).

    Google Scholar 

  32. Schlafer, S. & Meyer, R. L. Confocal microscopy imaging of the biofilm matrix. J. Microbiol. Methods 138, 50–59 (2017).

    Google Scholar 

  33. Panwar, J. & Merten, C. A. Fluorescence crosstalk reduction by modulated excitation-synchronous acquisition for multispectral analysis in high-throughput droplet microfluidics. Lab a Chip 23, 2514–2520 (2023).

    Google Scholar 

  34. Hollmann, B., Perkins, M., Chauhan, V. M., Aylott, J. W. & Hardie, K. R. Fluorescent nanosensors reveal dynamic pH gradients during biofilm formation. npj Biofilms Microbiomes 7, 50 https://doi.org/10.1038/s41522-021-00221-8 (2021).

  35. Prater, C. B., Kansiz, M. & Cheng, J.-X. A tutorial on optical photothermal infrared (O-PTIR) microscopy. APL Photonics 9, 091101 (2024).

    Google Scholar 

  36. Muhamadali, H. et al. Chicken, beams, and Campylobacter: rapid differentiation of foodborne bacteria via vibrational spectroscopy and MALDI-mass spectrometry. Analyst 141, 111–122 (2016).

    Google Scholar 

  37. Muhamadali, H. et al. Rapid, accurate, and comparative differentiation of clinically and industrially relevant microorganisms via multiple vibrational spectroscopic fingerprinting. Analyst 141, 5127–5136 (2016).

    Google Scholar 

  38. Helm, D. et al. Classification and identification of bacteria by Fourier-transform infrared spectroscopy. Microbiology 137, 69 (1991).

  39. Sayqal, A. et al. Metabolic analysis of the response of Pseudomonas putida DOT-T1E strains to toluene using Fourier transform infrared spectroscopy and gas chromatography mass spectrometry. Metabolomics 12, 112 https://doi.org/10.1007/s11306-016-1054-1 (2016).

  40. Muhamadali, H. et al. Metabolic profiling of geobacter sulfurreducens during industrial bioprocess scale-up. Appl. Environ. Microbiol. 81, 3288–3298 (2015).

    Google Scholar 

  41. Bechtel, H. A., Muller, E. A., Olmon, R. L., Martin, M. C. & Raschke, M. B. Ultrabroadband infrared nanospectroscopic imaging. Proc. Natl. Acad. Sci. USA 111, 7191–7196 (2014).

    Google Scholar 

  42. Klementieva, O. et al. Super-resolution infrared imaging of polymorphic amyloid aggregates directly in neurons. Adv. Sci. 7, 1903004 (2020).

    Google Scholar 

  43. Lima, C., Muhamadali, H. & Goodacre, R. Simultaneous raman and infrared spectroscopy of stable isotope labelled escherichia coli. Sensors 22, 3928 https://doi.org/10.3390/S22103928 (2022).

  44. Shams, S. et al. Optical photothermal infrared spectroscopy: a novel solution for rapid identification of antimicrobial resistance at the single-cell level via deuterium isotope labeling. Front. Microbiol. 14, 1077106 https://doi.org/10.3389/fmicb.2023.1077106 (2023).

  45. Wang, Y., Huang, W. E., Cui, L. & Wagner, M. Single cell stable isotope probing in microbiology using Raman microspectroscopy. Curr. Opin. Biotechnol. 41, 34–42 (2016).

    Google Scholar 

  46. Muhamadali, H., Chisanga, M. & Subaihi, A. & Goodacre, R. Combining raman and FT-IR spectroscopy with quantitative isotopic labeling for differentiation of E. Coli cells at community and single cell levels. Anal. Chem. 87, 4578–4586 (2015).

    Google Scholar 

  47. Chisanga, M., Muhamadali, H., Kimber, R. & Goodacre, R. Quantitative detection of isotopically enriched E. coli cells by SERS. Faraday Discuss. 205, 331–343 (2017).

    Google Scholar 

  48. Shams, S. et al. Application of infrared spectroscopy to study carbon-deuterium kinetics and isotopic spectral shifts at the single-cell level. Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 327, 125374 (2025).

    Google Scholar 

  49. Wang, Y. et al. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level. Anal. Chem. 88, 1602 https://doi.org/10.1021/acs.analchem.6b01602 (2016).

  50. Chisanga, M. et al. Metabolism in action: stable isotope probing using vibrational spectroscopy and SIMS reveals kinetic and metabolic flux of key substrates. Analyst 146, 2319 https://doi.org/10.1039/d0an02319a (2021).

  51. Goodacre, R., Lima, C., Muhamadali, H., Xu, Y. & Kansiz, M. Imaging isotopically labeled bacteria at the single-cell level using high-resolution optical infrared photothermal spectroscopy. Anal. Chem. 93, 3967 https://doi.org/10.1021/acs.analchem.0c03967 (2021).

  52. Berry, D. et al. Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing. Proc. Natl. Acad. Sci. USA 110, 4720–4725 (2013).

    Google Scholar 

  53. Peteranderl, R. & Lechene, C. Measure of carbon and nitrogen stable isotope ratios in cultured cells. J. Am. Soc. Mass Spectrom. 15, 478–485 (2004).

    Google Scholar 

  54. Bae, K., Zheng, W., Ma, Y. & Huang, Z. Real-time monitoring of pharmacokinetics of antibiotics in biofilms with Raman-tagged hyperspectral stimulated Raman scattering microscopy. Theranostics 932043 https://doi.org/10.7150/thno.32043 (2019).

  55. Shrestha, A., Shringi, S. & Shah, D. H. Rapid serotype-independent differential detection of biofilm-positive and biofilm-negative Salmonella using Fourier transform infrared biotyping. One Health 20, 101004 (2025).

    Google Scholar 

  56. Garg, A. et al. Microporous multiresonant plasmonic meshes by hierarchical micro–nanoimprinting for bio-interfaced SERS imaging and nonlinear nano-optics. Small 18, 2106887 (2022).

    Google Scholar 

  57. Crisp, A. R. et al. Investigating the chemical pathway to the formation of a single biofilm using infrared spectroscopy. Biofilm 6, 100141 (2023).

    Google Scholar 

  58. Lanni, E. J. et al. Correlated imaging with C60-SIMS and confocal raman microscopy: visualization of cell-scale molecular distributions in bacterial biofilms. Anal. Chem. 86, 10885–10891 (2014).

    Google Scholar 

  59. van Hoogstraten, S. W. G., Kuik, C., Arts, J. J. C. & Cillero-Pastor, B. Molecular imaging of bacterial biofilms—a systematic review. Crit. Rev. Microbiol. 50, 971–992 (2024).

    Google Scholar 

  60. Molina, C. et al. Comparison of different vibrational spectroscopic probes (ATR-FTIR, O-PTIR, Micro-Raman, and AFM-IR) of lipids and other compounds found in environmental samples: case study of substrate-deposited sea spray aerosols. ACS Measurement Science Au https://doi.org/10.1021/acsmeasuresciau.4c00033 (2024).

  61. Burr, D. J. et al. Stable isotope probing-nanoFTIR for quantitation of cellular metabolism and observation of growth-dependent spectral features. Small 20, e2400289 https://doi.org/10.1002/smll.202400289 (2024).

  62. Schiessl, K. T. et al. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat. Commun. 10, 8733 https://doi.org/10.1038/s41467-019-08733-w (2019).

  63. Xie, C. et al. Identification of single bacterial cells in aqueous solution using confocal laser tweezers raman spectroscopy. Anal. Chem. 77, 4390–4397 (2005).

    Google Scholar 

  64. Movasaghi, Z., Rehman, S. & Ur Rehman, D. I. Fourier Transform Infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 43, 134–179 (2008).

    Google Scholar 

  65. Maquelin, K. et al. Identification of medically relevant microorganisms by vibrational spectroscopy. J. Microbiol. Methods 51, 255–271 (2002).

    Google Scholar 

  66. Mecozzi, M., Pietroletti, M., Scarpiniti, M., Acquistucci, R. & Conti, M. E. Monitoring of marine mucilage formation in Italian seas investigated by infrared spectroscopy and independent component analysis. Environ. Monit. Assess. 184, 6025–6036 (2011).

    Google Scholar 

  67. Stewart Philip, S. Diffusion in Biofilms. J. Bacteriol. 185, 1485–1491 (2003).

    Google Scholar 

  68. Kosztołowicz, T. & Metzler, R. Diffusion of antibiotics through a biofilm in the presence of diffusion and absorption barriers. Phys. Rev. E 102, 032408 (2020).

    Google Scholar 

  69. Nichols, W. W., Dorrington, S. M., Slack, M. P. & Walmsley, H. L. Inhibition of tobramycin diffusion by binding to alginate. Antimicrobial Agents Chemother. 32, 518–523 (1988).

    Google Scholar 

  70. Patra, S., Saha, S., Singh, R., Tomar, N. & Gulati, P. Biofilm battleground: unveiling the hidden challenges, current approaches and future perspectives in combating biofilm associated bacterial infections. Microb. Pathogenesis 198, 107155 (2025).

    Google Scholar 

  71. Azeredo, J. et al. Critical review on biofilm methods. Crit. Rev. Microbiol. 43, 313–351 (2017).

    Google Scholar 

  72. Serra, D. O. & Hengge, R. Stress responses go three dimensional – the spatial order of physiological differentiation in bacterial macrocolony biofilms. Environ. Microbiol. 16, 1455–1471 (2014).

    Google Scholar 

  73. Klauck, G., Serra, D. O., Possling, A. & Hengge, R. Spatial organization of different sigma factor activities and c-di-GMP signalling within the three-dimensional landscape of a bacterial biofilm. Open Biol. 8, 180066 (2018).

    Google Scholar 

  74. Serra, D. O. & Hengge, R. A c-di-GMP-based switch controls local heterogeneity of extracellular matrix synthesis which is crucial for integrity and morphogenesis of escherichia coli macrocolony biofilms. J. Mol. Biol. 431, 4775–4793 (2019).

    Google Scholar 

  75. Kannan, H. et al. Spatiotemporal development of expanding bacterial colonies driven by emergent mechanical constraints and nutrient gradients. Nat. Commun. 16, 4878 (2025).

    Google Scholar 

  76. Stewart Philip, S. et al. Conceptual model of biofilm antibiotic tolerance that integrates phenomena of diffusion, metabolism, gene expression, and physiology. J. Bacteriol. 201, 00307–00319 (2019).

    Google Scholar 

  77. Li, P., Seneviratne Chaminda, J., Alpi, E., Vizcaino Juan, A. & Jin, L. Delicate metabolic control and coordinated stress response critically determine antifungal tolerance of candida albicans biofilm persisters. Antimicrobial Agents Chemother. 59, 6101–6112 (2015).

    Google Scholar 

  78. Davies, S. K. et al. Visualizing antimicrobials in bacterial biofilms: three-dimensional biochemical imaging using TOF-SIMS. mSphere 2, e00211–e00217 (2017).

    Google Scholar 

  79. Han, Q. et al. Regrowth of microcosm biofilms on titanium surfaces after various antimicrobial treatments. Front. Microbiol. 10, 2693 (2019).

    Google Scholar 

  80. Chadwick, G. L., Jiménez Otero, F., Gralnick, J. A., Bond, D. R. & Orphan, V. J. NanoSIMS imaging reveals metabolic stratification within current-producing biofilms. Proc. Natl. Acad. Sci. 116, 20716–20724 (2019).

    Google Scholar 

  81. Schlechter, R. O. et al. Chromatic bacteria - a broad host-range plasmid and chromosomal insertion toolbox for fluorescent protein expression in bacteria. Front. Microbiol. 9, 3052 (2018).

    Google Scholar 

  82. McKenzie, G. J. & Craig, N. L. Fast, easy and efficient: site-specific insertion of transgenes into Enterobacterial chromosomes using Tn7 without need for selection of the insertion event. BMC Microbiol. 6, 39 (2006).

    Google Scholar 

  83. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. (EUCAST, 2025).

  84. Lu, M., Liu, B., Xiong, W. & Liu, X. The combination of salmonella phage ST-3 and antibiotics to prevent salmonella typhimurium in vitro. Curr. Microbiol. 79, 371 (2022).

    Google Scholar 

  85. Mon Khin, K. Z., Si, Z., Chan-Park Mary, B. & Kenney Linda, J. Polyimidazolium protects against an invasive clinical isolate of salmonella typhimurium. Antimicrobial Agents Chemother. 66, e00597–00522 (2022).

    Google Scholar 

  86. Eckert, J. A., Rosenberg, M., Rhen, M., Choong, F. X. & Richter-Dahlfors, A. An optotracer-based antibiotic susceptibility test specifically targeting the biofilm lifestyle of Salmonella. Biofilm 4, 100083 (2022).

    Google Scholar 

  87. Patel, J., Singh, M., Macarisin, D., Sharma, M. & Shelton, D. Differences in biofilm formation of produce and poultry Salmonella enterica isolates and their persistence on spinach plants. Food Microbiol. 36, 388–394 (2013).

    Google Scholar 

  88. Prabhukhot, G. S., Eggleton, C. D., Kim, M. & Patel, J. Impact of surface topography and hydrodynamic flow conditions on single and multispecies biofilm formation by Escherichia coli O157:H7 and Listeria monocytogenes in presence of promotor bacteria. LWT 201, 116240 (2024).

    Google Scholar 

  89. Tan, Y. C. et al. EtOH-LN cryoembedding workflow to minimize freezing artifact in frozen tissues: a pilot study in preparing tissues compatible with mass spectrometry-based spatial proteomics application. Cryobiology 114, 104843 (2024).

    Google Scholar 

  90. Martens, H., Nielsen, J. P. & Engelsen, S. B. Light scattering and light absorbance separated by extended multiplicative signal correction. application to near-infrared transmission analysis of powder mixtures. Anal. Chem. 75, 394–404 (2003).

    Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the University of Liverpool for providing funding (DS, HM and RG). HM would also like to thank the Analytical Chemistry Trust Fund (ACTF) and Community for Analytical Measurement Science (CAMS) for funding and support (600310/22/09). RR is grateful for funding from the BBSRC and Innovate UK via the UK National Biofilm Innovation Centre (grant numbers BB/R012415/1, BB/X002950/1). DS would also like to thank the University of Liverpool Shared Research Histology Core Facility, RRID:SCR_026606 for their help and support with developing the cryosectioning protocol.

Author information

Authors and Affiliations

  1. Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK

    Daniel Smaje, Royston Goodacre & Howbeer Muhamadali

  2. Open Innovation Hub for Antimicrobial Surfaces, National Biofilms Innovation Centre, Department of Chemistry, University of Liverpool, Liverpool, UK

    Daniel Smaje & Rasmita Raval

  3. Department of Clinical Infection, Microbiology & Immunology (CIMI), University of Liverpool, Liverpool, UK

    Xiaojun Zhu & Jay C. D. Hinton

Authors
  1. Daniel Smaje
    View author publications

    Search author on:PubMed Google Scholar

  2. Xiaojun Zhu
    View author publications

    Search author on:PubMed Google Scholar

  3. Jay C. D. Hinton
    View author publications

    Search author on:PubMed Google Scholar

  4. Rasmita Raval
    View author publications

    Search author on:PubMed Google Scholar

  5. Royston Goodacre
    View author publications

    Search author on:PubMed Google Scholar

  6. Howbeer Muhamadali
    View author publications

    Search author on:PubMed Google Scholar

Contributions

D.S.: Experimental design, sample collection and preparation, O-PTIR data collection, data analysis and interpretation, manuscript writing; X.Z.: preparation of Salmonella Typhimurium from strain collection, engineering resistance into strains and manuscript preparation; J.H.: provision of Salmonella Typhimurium from strain collection, experimental design and manuscript preparation; R.R.: supervision, experimental design and manuscript preparation; R.G. provision of O-PTIR & Bioscreen instruments for analysis and manuscript preparation; H.M.: principal investigator, experimental design, data interpretation and manuscript preparation. All authors contributed to the project and viewed the final manuscript.

Corresponding author

Correspondence to Howbeer Muhamadali.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Dr Sridhar Mani and Dr Ophelia Bu.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smaje, D., Zhu, X., Hinton, J.C.D. et al. Investigating Salmonella biofilm responses to antibiotic treatment using optical photothermal infrared spectroscopy. Commun Biol (2026). https://doi.org/10.1038/s42003-026-09655-2

Download citation

  • Received: 02 September 2025

  • Accepted: 27 January 2026

  • Published: 11 February 2026

  • DOI: https://doi.org/10.1038/s42003-026-09655-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology