Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Simple mechanistic traits outperform complex syndromes in predicting avian dispersal distances
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 11 February 2026

Simple mechanistic traits outperform complex syndromes in predicting avian dispersal distances

  • Guillermo Fandos  ORCID: orcid.org/0000-0003-1579-94441,2,
  • Robert A. Robinson  ORCID: orcid.org/0000-0003-0504-99063,4 &
  • Damaris Zurell  ORCID: orcid.org/0000-0002-4628-35581 

Communications Biology , Article number:  (2026) Cite this article

  • 710 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Behavioural ecology
  • Ecological modelling
  • Macroecology
  • Zoology

Abstract

Dispersal is a fundamental ecological and evolutionary process, but identifying its determinants and predicting it across species remains a major challenge. Dispersal syndromes, which describe patterns of covariation among traits related to dispersal, are thought to capture general rules of dispersal evolution and its ecological consequences. Based on the most comprehensive empirical dispersal dataset available for European birds, we test how dispersal syndromes form and how well they predict dispersal across species. We found that distinct dispersal processes were governed by different trait combinations, with body mass consistently predicting overall dispersal, whereas flight efficiency was key for long-distance dispersal events. However, multi-trait dispersal syndromes performed poorly for phylogenetically distant species and were outperformed by models based on single mechanistic traits, especially body mass, life history, and, to a lesser extent, flight efficiency. Thus, single traits with clear mechanistic meaning predict avian dispersal ability better than complex syndromes. These findings highlight the complexity of avian dispersal and emphasize the need for refined mechanistic approaches to understand the constraints shaping dispersal evolution. Together, our study calls for broader empirical efforts and more mechanistic frameworks to uncover the evolutionary and ecological drivers of dispersal.

Similar content being viewed by others

Environmental signal in the evolutionary diversification of bird skeletons

Article 26 October 2022

Physiology can predict animal activity, exploration, and dispersal

Article Open access 03 February 2022

Climate-driven variation in dispersal ability predicts responses to forest fragmentation in birds

Article 29 May 2023

Data availability

All data used in this study are derived from previously published sources. Dispersal kernel estimates were obtained from Fandos et al.8. Species trait data were compiled from Sheard et al.16, Reif et al.34, and Storchová and Hořák35. Phylogenetic data were obtained from Jetz et al.33. No new data were generated in this study.

Code availability

The code used to analyse the data and create the figures in this paper is available on Zenodo81 under the identifier: Fandos, G., Robinson, R., & Zurell, D. (2026). Code and data for: Simple mechanistic traits outperform complex syndromes in predicting avian dispersal distances (all versions). Zenodo https://doi.org/10.5281/zenodo.10713957.

References

  1. Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford University Press, 2012).

  2. Ronce, O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38, 231–253 (2007).

    Google Scholar 

  3. Travis, J. M. J. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540 (2013).

    Google Scholar 

  4. Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).

    Google Scholar 

  5. Goossens, S., Wybouw, N., Van Leeuwen, T. & Bonte, D. The physiology of movement. Mov. Ecol. 8, 5 (2020).

    Google Scholar 

  6. Ronce, O. & Clobert, J. Dispersal syndromes. Dispersal Ecol. Evol. 155, 119–138 (2012).

    Google Scholar 

  7. Bullock, J. M. et al. A synthesis of empirical plant dispersal kernels. J. Ecol. 105, 6–19 (2017).

    Google Scholar 

  8. Fandos, G. et al. Standardised empirical dispersal kernels emphasise the pervasiveness of long-distance dispersal in European birds. J. Animal Ecol. 92, 158–170 (2023).

    Google Scholar 

  9. Nathan, R. The challenges of studying dispersal. Trends Ecol. Evol. 16, 481–483 (2001).

    Google Scholar 

  10. Barbet-Massin, M., Thuiller, W. & Jiguet, F. The fate of European breeding birds under climate, land-use and dispersal scenarios. Glob. Change Biol. 18, 881–890 (2012).

    Google Scholar 

  11. Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466–aad8466 (2016).

    Google Scholar 

  12. Paradis, E., Baillie, S. R., Sutherland, W. J. & Gregory, R. D. Patterns of natal and breeding dispersal in birds. J. Animal Ecol. 67, 518–536 (1998).

    Google Scholar 

  13. Chu, J. J. & Claramunt, S. Determinants of natal dispersal distances in North American birds. Ecol. Evol. 13, e9789 (2023).

    Google Scholar 

  14. Weeks, B. C. et al. Morphological adaptations linked to flight efficiency and aerial lifestyle determine natal dispersal distance in birds. Funct. Ecol. 36, 1681–1689 (2022).

    Google Scholar 

  15. Claramunt, S. Flight efficiency explains differences in natal dispersal distances in birds. Ecology 102, e03442 (2021).

    Google Scholar 

  16. Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020).

    Google Scholar 

  17. Jenkins, D. G. et al. Does size matter for dispersal distance? Glob. Ecol. Biogeogr. 16, 415–425 (2007).

    Google Scholar 

  18. Cote, J. & Clobert, J. Risky dispersal: avoiding kin competition despite uncertainty. Ecology 91, 1485–1493 (2010).

    Google Scholar 

  19. Silverin, B. The stress response and autumn dispersal behaviour in willow tits. Animal Behav. 53, 451–459 (1997).

    Google Scholar 

  20. Peach, W. J., Hanmer, D. B. & Oatley, T. B. Do southern African songbirds live longer than their European counterparts? Oikos 93, 235–249 (2001).

    Google Scholar 

  21. Salewski, V. & Bruderer, B. The evolution of bird migration—a synthesis. Naturwissenschaften 94, 268–279 (2007).

    Google Scholar 

  22. Nur, N. The consequences of brood size for breeding Blue Tits. Iii. Measuring the cost of reproduction: survival, future fecundity, and differential dispersal. Evolution 42, 351–362 (1988).

    Google Scholar 

  23. Sutherland, G. D., Harestad, A. S., Price, K. & Lertzman, K. P. Scaling of natal dispersal distances in terrestrial birds and mammals. Ecol. Soc. 4, 16 (2000).

  24. Stevens, V. M. et al. A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol. Lett. 17, 1039–1052 (2014).

    Google Scholar 

  25. Bowman, J., Jaeger, J. A. & Fahrig, L. Dispersal distance of mammals is proportional to home range size. Ecology 83, 2049–2055 (2002).

    Google Scholar 

  26. Horswill, C. et al. Improving assessments of data-limited populations using life-history theory. J. Appl. Ecol. 58, 1225–1236 (2021).

    Google Scholar 

  27. Stevens, V. M. et al. Dispersal syndromes and the use of life-histories to predict dispersal. Evol. Appl. 6, 630–642 (2013).

    Google Scholar 

  28. Whitmee, S. & Orme, C. D. L. Predicting dispersal distance in mammals: a trait-based approach. J. Animal Ecol. 82, 211–221 (2013).

    Google Scholar 

  29. Ottaviani, D., Cairns, S. C., Oliverio, M. & Boitani, L. Body mass as a predictive variable of home-range size among Italian mammals and birds. J. Zool. 269, 317–330 (2006).

    Google Scholar 

  30. Dingle, H. Animal migration: is there a common migratory syndrome? J Ornithol. 147, 212–220 (2006).

    Google Scholar 

  31. Piersma, T., Pérez-Tris, J., Mouritsen, H., Bauchinger, U. & Bairlein, F. Is there a “migratory syndrome” common to all migrant birds? Annals N Y Acad. Sci. 1046, 282–293 (2005).

    Google Scholar 

  32. Winger, B. M., Auteri, G. G., Pegan, T. M. & Weeks, B. C. A long winter for the Red Queen: rethinking the evolution of seasonal migration. Biol. Rev. 94, 737–752 (2019).

    Google Scholar 

  33. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Google Scholar 

  34. Reif, J., Hořák, D., Krištín, A., Kopsová, L. & Devictor, V. Linking habitat specialization with species’ traits in European birds. Oikos 125, 405–413 (2016).

    Google Scholar 

  35. Storchová, L. & Hořák, D. Life-history characteristics of European birds. Glob Ecol. Biogeogr. 27, 400–406 (2018).

    Google Scholar 

  36. Stevens, V. M., Trochet, A., Van Dyck, H., Clobert, J. & Baguette, M. How is dispersal integrated in life histories: a quantitative analysis using butterflies: Dispersal life-history correlates. Ecol. Lett. 15, 74–86 (2012).

    Google Scholar 

  37. Sæther, B.-E. & Bakke, Ø Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).

    Google Scholar 

  38. Comte, L. & Olden, J. D. Evidence for dispersal syndromes in freshwater fishes. Proc. R. Soc. B: Biol. Sci. 285, 20172214 (2018).

    Google Scholar 

  39. Hämäläinen, A. M., Guenther, A., Patrick, S. C. & Schuett, W. Environmental effects on the covariation among pace-of-life traits. Ethology 127, 32–44 (2021).

    Google Scholar 

  40. Garrard, G. E., McCarthy, M. A., Vesk, P. A., Radford, J. Q. & Bennett, A. F. A predictive model of avian natal dispersal distance provides prior information for investigating response to landscape change. J. Animal Ecol. 81, 14–23 (2012).

    Google Scholar 

  41. Matthysen, E. Multicausality of dispersal. in Dispersal ecology and evolution/Clobert 3–18 (OUP Oxford, 2012).

  42. Orme, C. D. L. et al. Global patterns of geographic range size in birds. PLOS Biol. 4, e208 (2006).

    Google Scholar 

  43. McNamara, J. M., Barta, Z., Wikelski, M. & Houston, A. I. A theoretical investigation of the effect of latitude on avian life histories. Am. Nat. 172, 331–345 (2008).

    Google Scholar 

  44. Bonte, D. et al. Costs of dispersal. Biol. Rev. 87, 290–312 (2012).

    Google Scholar 

  45. Kennedy, J. D. et al. The influence of wing morphology upon the dispersal, geographical distributions and diversification of the Corvides (Aves; Passeriformes). Proc. R. Soc. B: Biol. Sci. 283, 20161922 (2016).

    Google Scholar 

  46. Pigot, A. L., Jetz, W., Sheard, C. & Tobias, J. A. The macroecological dynamics of species coexistence in birds. Nat. Ecol. Evol. 2, 1112–1119 (2018).

    Google Scholar 

  47. Nathan, R. An emerging movement ecology paradigm. Proc. Natl. Acad. Sci. 105, 19050–19051 (2008).

    Google Scholar 

  48. Soriano-Redondo, A., Gutiérrez, J. S., Hodgson, D. & Bearhop, S. Migrant birds and mammals live faster than residents. Nat. Commun. 11, 5719 (2020).

    Google Scholar 

  49. Teitelbaum, C. S. & Mueller, T. Beyond migration: causes and consequences of nomadic animal movements. Trends Ecol. Evol. 34, 569–581 (2019).

    Google Scholar 

  50. Losos, J. B. Convergence, adaptation, and constraint. Evolution 65, 1827–1840 (2011).

    Google Scholar 

  51. Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).

    Google Scholar 

  52. Böhning-Gaese, K. & Oberrath, R. Phylogenetic effects on morphological, life-history, behavioural and ecological traits of birds. Evol. Ecol. Res. 1, 347–364 (1999).

    Google Scholar 

  53. Crouch, N. M. & Tobias, J. A. The causes and ecological context of rapid morphological evolution in birds. Ecol. Lett. 25, 611–623 (2022).

    Google Scholar 

  54. Cote, J. et al. Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes. Ecography 40, 56–73 (2017).

    Google Scholar 

  55. Cote, J. et al. Dispersal syndromes in challenging environments: a cross-species experiment. Ecol. Lett. 25, 2675–2687 (2022).

    Google Scholar 

  56. Nathan, R., Klein, E., Robledo-Arnuncio, J. J. & Revilla, E. Dispersal kernels: review. In Dispersal Ecology and Evolution. (eds J. Clobert, M. Baguette, T. G. Benton, & J. M. Bullock) 25, 187–210 (Oxford University Press, 2012).

  57. Bonte, D. & Dahirel, M. Dispersal: a central and independent trait in life history. Oikos 126, 472–479 (2017).

    Google Scholar 

  58. Fan, H. et al. The influence of wing morphology upon intraspecific divergence in birds: a global study of subspecies richness. Avian Res. 15, 100188 (2024).

    Google Scholar 

  59. Delgado, M.D.M., Penteriani, V., Revilla, E. & Nams, V.O. The effect of phenotypic traits and external cues on natal dispersal movements. J. Animal Ecol. 79, 620–632 (2010).

    Google Scholar 

  60. Raffard, A. et al. Dispersal syndromes can link intraspecific trait variability and meta-ecosystem functioning. Trends Ecol Evol 37, 322–331 (2022).

    Google Scholar 

  61. Zurell, D. Integrating demography, dispersal and interspecific interactions into bird distribution models. J Avian Biol 48, 1505–1516 (2017).

    Google Scholar 

  62. Gardner, E. et al. A family of process-based models to simulate landscape use by multiple taxa. Landsc. Ecol 39, 102 (2024).

    Google Scholar 

  63. Briscoe, N. J. et al. Forecasting species range dynamics with process-explicit models: matching methods to applications. Ecol. Lett. 22, 1940–1956 (2019).

    Google Scholar 

  64. Zurell, D. et al. Spatially explicit models for decision-making in animal conservation and restoration. Ecography 2022, https://doi.org/10.1111/ecog.05787 (2022).

  65. Schaub, M., Looft, V., Plard, F. & Von Rönn, J. A. C. Dynamics of a goshawk population across half a century is driven by the variation of first-year survival. Ecol. Evol. 14, e70058 (2024).

    Google Scholar 

  66. Du Feu, C. R., Clark, J. A., Schaub, M., Fiedler, W. & Baillie, S. R. The EURING Data Bank–a critical tool for continental-scale studies of marked birds. Ringing Migr. 31, 1–18 (2016).

    Google Scholar 

  67. Koschová, M., Rivas-Salvador, J. & Reif, J. Continent-wide test of the efficiency of the European union’s conservation legislation in delivering population benefits for bird species. Ecol. Indic. 85, 563–569 (2018).

    Google Scholar 

  68. Hanzelka, J., Horká, P. & Reif, J. Spatial gradients in country-level population trends of European birds. Divers. Distrib. 25, 1527–1536 (2019).

    Google Scholar 

  69. Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).

    Google Scholar 

  70. Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Google Scholar 

  71. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 2, 217–223 (2012).

  72. Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. Performance: an R package for assessment, comparison and testing of statistical models. J. Open Sour. Softw. 6, 3139 (2021).

  73. Hartig, F. & Lohse, L. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.4.7. https://CRAN.R-project.org/package=DHARMa (2022).

  74. Rodríguez-Sánchez, F. DHARMa.helpers: Helper functions to check models not (yet) directly supported by DHARMa (version 0.0.2) [R package]. GitHub. https://github.com/Pakillo/DHARMa.helpers (2024).

  75. Piironen, J., Paasiniemi, M. & Vehtari, A. Projective inference in high-dimensional problems: prediction and feature selection. Electron. J. Stat. 14, 2155–2197 (2020).

  76. Burnham, K. & Anderson, D. Model Selection and Multi-Model Inference (Springer, 2002).

  77. Piironen, J., Paasiniemi, M., Catalina, A., Weber, F. & Vehtari, A. projpred: Projection Predictive Feature Selection (version 2.6.0) [R package]. https://github.com/Pakillo/DHARMa.helpers (2023).

  78. Freckleton, R. P. On the misuse of residuals in ecology: regression of residuals vs. multiple regression. J. Animal Ecol. 542–545 (2002).

  79. Arlot, S. & Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 4, 40–79 (2010).

  80. Gelman, A., Goodrich, B., Gabry, J. & Vehtari, A. R-squared for Bayesian regression models. Am. Stat. 73, 307–309 (2019).

  81. Fandos, G., Robinson, R. & Zurell, D. Code and data for: Simple mechanistic traits outperform complex syndromes in predicting avian dispersal distances. Zenodo https://doi.org/10.5281/zenodo.10713957 (2026).

Download references

Acknowledgements

D.Z. and G.F. received funding from the German Science Foundation DFG (grant no. ZU 361/1-1), G.F. also received funding from the Community of Madrid (Spain) and the Universidad Complutense de Madrid (Grant No. PR17/24-31914).

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany

    Guillermo Fandos & Damaris Zurell

  2. Department of Biodiversity Ecology and Evolution, Faculty of Biology, Complutense University, Madrid, Spain

    Guillermo Fandos

  3. British Trust for Ornithology, The Nunnery, Thetford, Norfolk, UK

    Robert A. Robinson

  4. European Union for Bird Ringing, Zorroagagaina 11, E20014, San Sebastián, Spain

    Robert A. Robinson

Authors
  1. Guillermo Fandos
    View author publications

    Search author on:PubMed Google Scholar

  2. Robert A. Robinson
    View author publications

    Search author on:PubMed Google Scholar

  3. Damaris Zurell
    View author publications

    Search author on:PubMed Google Scholar

Contributions

G.F. and D.Z. designed research; G.F. performed research; G.F. analyzed data; G.F. and D.Z. conception and management of the project; G.F., R.R., and D.Z. wrote the paper. D.Z. acquired the funding.

Corresponding author

Correspondence to Guillermo Fandos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: George Inglis. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fandos, G., Robinson, R.A. & Zurell, D. Simple mechanistic traits outperform complex syndromes in predicting avian dispersal distances. Commun Biol (2026). https://doi.org/10.1038/s42003-026-09676-x

Download citation

  • Received: 02 November 2025

  • Accepted: 28 January 2026

  • Published: 11 February 2026

  • DOI: https://doi.org/10.1038/s42003-026-09676-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing