Abstract
The origin of the extensive phenotypic divergence characterizing adaptive radiation could often be geographically localized and genetically simple. In a classic case of a trophically polymorphic cichlid fish (Herichthys minckleyi), we investigated alternative genomic processes that could have produced its extreme within-population variation in pharyngeal jaw tooth size. First, we generated a high-quality reference genome for its close relative (H. cyanoguttatus) to dissect the genetic architecture of this dental polymorphism. Then, using whole genome resequencing across the small Cuatro Ciénegas valley where H. minckleyi is endemic, we found substantial micro-geographic subdivision and effectively no genetic structure due to pharyngeal morphotype. We also employed quantitative trait loci mapping and genome wide association to pinpoint a single peak in an Iroquois-related (IRX) gene cluster associated with H. minckleyi’s dental divergence. Interspecific introgression in this genomic region appears negligible, suggesting the genomic basis of the polymorphism likely arose within cichlids confined to Cuatro Ciénegas. Because H. minckleyi tooth size disparity is comparable to that found in all Central American cichlids, this offers a striking example of how genomic divergence at a single locus could produce a punctuated burst of eco-morphological divergence that generates phenotypic breadth comparable to a highly diverse cichlid adaptive radiation.
Similar content being viewed by others
Data availability
The Herichthys cyanogutattus genome assembly, the genomic data used to build and scaffold the contigs (PacBio HiFi long reads, 10x chromium synthetic long reads, Hi-C short reads, and Bionano optical map), and the transcriptomic data used to annotate the protein-coding genes in the genome have been deposited into the NCBI database under BioProject PRJNA1163081. The ddRAD data of the two parents and the 193 F2 individuals used to produce the linkage map and perform QTL mapping of the tooth area have been deposited into the NCBI database under BioProject PRJNA1165996. The WGS data of the 70 individuals, including the two parents of the QTL cross, used to analyze population structure, gene flow, and carry out GWAS, have been deposited into the NCBI database under BioProject PRJNA1167894. The Herichthys cyanogutattus protein-coding gene annotation123 has been deposited into FigShare.
References
Meyer, A. Ecological and evolutionary aspects of the trophic polymorphism in Cichlasoma citrinellum (Pisces, Cichlidae). Biol. J. Linn. Soc. 39, 279–299 (1990).
Smith, T. B. & Skúlason, S. Evolutionary significance of resource polymorphisms in fishes, amphibians, and birds. Ann. Rev. Ecol. Syst. 27, 111–133 (1996).
Kautt, A. F. et al. Contrasting signatures of genomic divergence in rapidly speciating crater lake cichlid fishes. Nature 588, 106–111 (2020).
Hulsey, C. D. & García de León, F. J. Introgressive hybridization in a trophically polymorphic cichlid. Ecol. Evol. 3, 4536–4547 (2013).
Daniels, M. J. & Corbett, L. Redefining introgressed protected mammals: When is a wildcat a wild cat and a dingo a wild dog? Wild. Res. 30, 213–218 (2003).
McGinnity, P. et al. Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc. R. Soc. Lond. B. 270, 2443–2450 (2003).
Riley, S. P. D., Shaffer, H. B., Voss, S. R. & Fitzpatrick, B. M. Hybridization between a rare, native tiger salamander (Ambystoma californiense) and its introduced congener. Ecol. Appl. 13, 1263–1275 (2003).
Seehausen, O. Hybridization and adaptive radiation. Trends Ecol. Evol. 19, 198–207 (2004).
Streelman, J. T. et al. Hybridization and contemporary evolution in an introduced cichlid fish from Lake Malawi National Park. Mol. Ecol. 13, 2471–2479 (2004).
Mims, M. C. et al. Geography disentangles introgression from ancestral polymorphism in Lake Malawi cichlids. Mol. Ecol. 19, 940–951 (2010).
Rieseberg, L. H. et al. Transgressive segregation, adaptation and speciation. Heredity 83, 363–372 (1999).
Stelkens, R. & Seehausen, O. Genetic distance between species predicts novel trait expression in their hybrids. Evolution 63, 884–897 (2009).
Parnell, N. F., Hulsey, C. D. & Streelman, J. T. The genetic basis of a complex functional system. Evolution 66, 3352–3366 (2012).
Holzman, R. & Hulsey, C. D. Mechanical transgressive segregation and the rapid origin of trophic novelty. Sci. Rep. 7, 40306 (2017).
Wainwright, P. C. et al. Evaluating the use of ram and suction during prey capture by cichlid fishes. J. Exp. Biol. 204, 3039–3051 (2001).
Liem, K. F. Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst. Zool. 22, 425–441 (1973).
Wainwright, P. C. et al. The evolution of pharyngognathy: A phylogenetic and functional appraisal of the pharyngeal jaw key innovation in labroid fishes and beyond. Syst. Biol. 61, 1001–1027 (2012).
Ronco, F. et al. Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature 589, 76–81 (2021).
Kornfield, I. L. & Koehn, R. K. Genetic variation and speciation in New World cichlids. Evolution 94, 427–437 (1975).
Sage, R. D. & Selander, R. K. Trophic radiation through polymorphism in cichlid fishes. Proc. Natl. Acad. Sci. USA 72, 4669–4673 (1975).
Trapani, J. Morphological variability in the Cuatro Cienegas cichlid, Cichlasoma minckleyi. J. Fish. Biol. 62, 276–298 (2003).
Hulsey, C. D., Hendrickson, D. A. & García de León, F. J. Trophic morphology, feeding performance, and prey use in the polymorphic fish Herichthys minckleyi. Evol. Ecol. Res 7, 303–324 (2005).
Hulsey, C. D. Function of a key morphological innovation: fusion of the cichlid pharyngeal jaw. Proc. Roy. Soc. Ser. B 273, 669–675 (2006).
Kornfield, I. L. & Taylor, J. N. A new species of polymorphic fish, Cichlasoma minckleyi, from Cuatro Ciénegas, Mexico (Teleostei, Cichlidae). Proc. Biol. Soc. Wash. 96, 253–269 (1983).
Swanson, B. O. et al. Trophic polymorphism and behavioral differences decrease intra-specific competition in a cichlid, Herichthys minckleyi. Ecology 84, 1441–1446 (2003).
Hulsey, C. D. et al. Feeding specialization in Herichthys minckleyi: a trophically polymorphic fish. J. Fish. Biol. 68, 1–12 (2006).
Liem, K. L. & Kaufman, F. Intraspecific macroevolution: functional biology of the polymorphic cichlid species Cichlasoma minckleyi. 203–215. In: Echelle, A. A. & Kornfield, I. (eds.) Evolution of fish species flocks. (University of Maine Press, 1984).
Gingerich, P. D. Size variability of the teeth in living mammals and the diagnosis of closely related sympatric fossil species. J. Paleo. 48, 895–903 (1974).
Kornfield, I. L., Smith, D. C., Gagnon, P. S. & Taylor, J. N. The cichlid fish of Cuatro Ciénegas, Mexico: direct evidence of conspecificity among distinct trophic morphs. Evolution 36, 658–664 (1982).
Hulsey, C. D., García de León, F. J. & Rodiles-Hernández, R. Micro- and macroevolutionary decoupling of cichlid jaws: a test of Liem’s key innovation hypothesis. Evolution 60, 2096–2109 (2006).
Hulsey, C. D., Roberts, R. J., Lin, A. S. P., Guldberg, R. & Streelman, J. T. Convergence in mechanically complex phenotype: Detecting structural adaptations for crushing in cichlid fish. Evolution 62, 1587–1599 (2008).
Magalhaes, I. S. et al. Untangling the evolutionary history of a highly polymorphic species: introgressive hybridization and high genetic structure in the desert cichlid sh Herichtys minckleyi. Mol. Ecol. 24, 4505–4520 (2015).
Bell, K., Nice, C. & Hulsey, C. D. Population genomic evidence reveals subtle patterns of differentiation in the trophically polymorphic Cuatro Ciénegas Cichlid, herichthys minckleyi. Herichthys minckleyi. J. Hered. 110, 361–369 (2019).
Huysseune, A. Phenotypic plasticity in the lower pharyngeal jaw dentition of Astatoreochromis alluaudi (Teleostei: Cichlidae). Arch. Oral. Biol. 40, 1005–1014 (1995).
Karagic, N., Meyer, A. & Hulsey, C. D. Phenotypic plasticity in vertebrate dentitions. Int. Comp. Biol. 60, 608–618 (2020).
Xiong, P. et al. The comparative genomic landscape of adaptive radiation in crater lake cichlid fishes. Mol. Ecol. 30, 955–972 (2021).
Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).
Fruciano, C. et al. Genetic linkage of distinct adaptive traits in sympatrically speciating crater lake cichlid fish. Nat. Commun. 7, 12736 (2016).
Masonick, P., Meyer, A. & Hulsey C. D. A kiss of deep homology: partial convergence in the genomic basis of cichlid fish trophic novelties and human cleft lip. Genom. Biol. Evol. 15, evad072 (2023).
Hulsey, C. D., García de León, F. J., Sanchez-Johnson, Y., Hendrickson, D. A. & Near, T. J. Temporal diversification of Mesoamerican cichlid fishes across a major biogeographic boundary. Mol. Phylog. Evol. 31, 754–764 (2004).
Scherz, M. D., Masonick, P. K., Meyer, A. & Hulsey, C. D. Between a rock and a hard polytomy: phylogenomics of the rock-dwelling mbuna cichlids of Lake Malaŵi. Syst. Biol. 71, 741–757 (2022).
Minckley, W. L. Environments of the bolson of Cuatro Ciénegas: Coahuila Mexico with special reference to the aquatic biota. Univ. Tex. El Paso Sci. Ser. 2, 1–63 (1969).
Chaves-Campos, J., Johnson, S. G. & Hulsey, C. D. Spatial geographic mosaic in an aquatic predator-prey network. PLoS One 6, e22472 (2011).
McGaugh, S. E. Comparative population genetics of aquatic turtles in the desert. Cons. Genet. 13, 1561–1576 (2012).
López-Fernández, H. et al. Testing for ancient adaptive radiations in neotropical cichlid fishes. Evolution 67, 1321–1337 (2013).
Hendrickson, D. A. et al. Combining ecological research and conservation: a case study in Cuatro Ciénegas, Coahuila, Mexico. 127–157. In:. Stevens L, Meretsky V (eds.) Aridland springs in North America: ecology and conservation (The University of Arizona Press, 2008).
Hulsey, C. D. et al. Do relaxed selection and habitat temperature facilitate biased mitogenomic introgression in a narrowly endemic fish? Ecol. Evol. 6, 3684–3698 (2016).
Meier, J. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 14363 (2017).
Chan, W. Y. et al. Hybridization as a conservation management tool. Cons. Lett. 12, e12652 (2019).
Carson, E. W. & Dowling, T. E. Influence of hydrogeographic history and hybridization on the distribution of genetic variation in the pupfishes Cyprinodon atrorus and C. bifasciatus. Mol. Ecol. 15, 667–679 (2006).
Gould, S. & Eldredge, N. Punctuated equilibrium comes of age. Nature 366, 223–227 (1993).
Mayr, E. Speciation and macroevolution. Evolution 36, 1119–1132 (1982).
Kratochwil, C. F. et al. Agouti related peptide 2 facilitates convergent evolution of stripe patterns across cichlid fish radiations. Science 362, 457–460 (2018).
Moran, R. L. et al. Selection-driven trait loss in independently evolved cavefish populations. Nat. Commun. 14, 2557 (2023).
Smith, M. M. Vertebrate dentitions at the origin of jaws: When and how pattern evolved. Evol. Dev. 5, 394–413 (2003).
Rasch, L. J. et al. An ancient dental gene set governs development and continuous regeneration of teeth in sharks. Dev. Biol. 415, 347–370 (2016).
LeBlanc, A. R. H. et al. Iron-coated Komodo dragon teeth and the complex dental enamel of carnivorous reptiles. Nat. Ecol. Evol. 8, 1711–1722 (2024).
Hulsey, C. D. et al. Grand challenges in comparative tooth biology. Int. Comp. Biol. 60, 563–580 (2020).
Machado, F. A. et al. Rules of teeth development align microevolution with macroevolution in extant and extinct primates. Nat. Ecol. Evol. 7, 1729–1739 (2023).
Karagic, N., Schneider, R. F., Meyer, A. & Hulsey, C. D. A genomic cluster with novel and conserved genes is associated with cichlid dental developmental convergence. Mol. Biol. Evol. 37, 3165–3174 (2020).
Fraser, G. J. et al. An ancient gene network is co-opted for teeth on old and new jaws. PLoS Biol. 7, e1000031 (2009).
Jernvall, J. & Thesleff, I. Tooth shape formation and tooth renewal: Evolving with the same signals. Development 139, 3487–3497 (2012).
Tucker, A. S. & Fraser, G. J. Evolution and developmental diversity of tooth regeneration. Semin. Cell Dev. Biol. 25–26, 71–80 (2014).
Hulsey, C. D., Fraser, G. J. & Meyer, A. Biting into the genome to phenome map: developmental genetic modularity of cichlid fish dentitions. Integ. Comp. Biol. 56, 373–388 (2016).
Cleves, P. A. et al. Evolved tooth gain in sticklebacks is associated with a cis-regulatory allele of Bmp6. Proc. Nat. Acad. Sci. USA 111, 13912–13917 (2014).
Kornfield, I. Descriptive genetics of cichlid fishes. 591–616. In B. J. Turner (ed.) Evolutionary genetics of fishes (Plenum Publishing Corporation, 1984).
García de León, F. J., Rodríguez Martínez, R. I. & Hendrickson, D. A. Genetic analysis and conservation status of native populations of largemouth bass in Northeastern Mexico. Am. Fish. Soc. Symp. 82, 635–657 (2015).
Ueshima, R. & Asami, T. Single-gene speciation by left–right reversal. Nature 425, 679 (2003).
Irisarri, I. et al. Phylogenomics uncovers hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nat. Commun. 9, 3159 (2018).
Greenwood, P. H. Explosive speciation in African lakes. Proc. Roy. Inst. G. B. 40, 256–269 (1964).
Fryer, G. & Iles, T. D. The cichlid fishes of the Great Lakes of Africa. (Oliver & Boyd, 1972)
Malinsky, M. et al. Whole-genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. Nat. Ecol. Evol. 2, 1940–1955 (2018).
Houweling, A. C. et al. Gene and cluster-specific expression of the Iroquois family members during mouse development. Mech. Devel. 107, 169–174 (2001).
Fraser, G. J., Bloomquist, R. F. & Streelman, J. T. Common developmental pathways link tooth shape to regeneration. Dev. Biol. 377, 399–414 (2013).
Yu, W. et al. Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation. Dev. Biol. 429, 44–55 (2017).
Hulsey, C. D., García de León, F. J. & Meyer, A. Sexual dimorphism in a trophically polymorphic cichlid fish? J. Morph 276, 1448–1454 (2015).
Tena, J. et al. An evolutionarily conserved three-dimensional structure in the vertebrate Irx clusters facilitates enhancer sharing and coregulation. Nat. Commun. 2, 310 (2011).
Toews, D. P. L. et al. Plumage genes and little else distinguish the genomes of hybridizing warblers. Curr. Biol. 26, 2313–2318 (2016).
McGaugh, S. E. & Noor, M. A. Genomic impacts of chromosomal inversions in parapatric Drosophila species. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 422–429 (2012).
Mérot, C. Making the most of population genomic data to understand the importance of chromosomal inversions for adaptation and speciation. Mol. Ecol. 29, 2513–2516 (2020).
Gingerich, P. D. Rates of evolution: a quantitative synthesis (Cambridge Univ. Press, 2019).
Rolland, J. et al. Conceptual and empirical bridges between micro- and macroevolution. Nat. Ecol. Evol. 7, 1181–1193 (2023).
Schneider, C. A. et al. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
Hulsey, C. D., Meyer, A. & Streelman, J. T. Convergent evolution of cichlid fish pharyngeal jaw dentitions in mollusk-crushing predators: comparative x-ray computed tomography of tooth sizes, numbers, and replacement. Int. Comp. Biol. 60, 656–664 (2020).
Marwick, B. & Krishnamoorthy, K. cvequality: tests for the equality of coefficients of variation from multiple groups. R package version v.0.1.3. (2019).
Grohme, M. A. et al. The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms. Nature 554, 56–61 (2018).
Nowoshilow, S. et al. The axolotl genome and the evolution of key tissue formation regulators. Nature 554, 50–55 (2018).
Stankova, H. et al. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes. Plant Biotech. J. 14, 1523–1531 (2016).
Ghurye, J. et al. Integrating Hi-C links with assembly graphs for chromosome-scale assembly. PLoS Comput. Biol. 15, e1007273 (2019).
Marks, P. et al. Resolving the full spectrum of human genome variation using Linked-Reads. Genom. Res 29, 635–645 (2019).
Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at https://arxiv.org/abs/1207.3907 (2012).
Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008(2021).
Conte, M. A. et al. A high quality assembly of the Nile Tilapia (Oreochromis niloticus) genome reveals the structure of two sex determination regions. BMC Genom. 18, 341 (2017).
Harris, R. S. Improved Pairwise Alignment of Genomic DNA (Pennsylvania State Univ., 2007).
RepeatModeler (RRID:SCR_015027).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Song, L. & Florea, L. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. Gigascience 4, 48 (2015).
MacManes, M. D. The Oyster River Protocol: a multi-assembler and kmer approach for de novo transcriptome assembly. PeerJ 6, e5428 (2018).
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
Nishimura, O., Hara, Y. & Kuraku, S. gVolante for standardizing completeness assessment of genome and transcriptome assemblies. Bioinformatics 33, 3635–3637 (2017).
Pychopper (RRID:SCR_018966).
Palmer, J. M. & Stajich, J. Funannotate v1.8.1: Eukaryotic genome annotation. Zenodo. (2020).
Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucl. Acid. Res. 31, 5654–5666 (2003).
UniProtKB/SWISSPROT database (UniProtKB/Swiss-Prot 2022_03).
Slater, G. S. C. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinforma. 6, 31 (2005).
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).
Tan, A., Abecasis, G. R. & Kang, H. M. Unified representation of genetic variants. Bioinformatics 31, 2202–2204 (2015).
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, s13742-015–0047-8 (2015).
Browning, B. L., Zhou, Y. & Browning, S. R. A one-penny imputed genome from next generation reference panels. Am. J. Hum. Genet. 103, 338–348 (2018).
Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genom. Res. 19, 1655–1664 (2009).
Boulter, J. Coordinate Distance Calculator. https://boulter.com/gps/distance/ (Accessed 1 November 2023).
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7, e37135 (2012).
Franchini, P., Monné Parera, D., Kautt, A. F. & Meyer, A. quaddRAD: a new high-multiplexing and PCR duplicate removal ddRAD protocol produces novel evolutionary insights in a nonradiating cichlid lineage. Mol. Ecol. 26, 2783–2795 (2017).
Catchen, J. et al. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).
Van Ooijen J. W. JoinMap 4. Software for the Calculation of Genetic Linkage Maps in Experimental Populations. (Kyazma BV, 2006).
Broman, K. W., Wu, H., Sen, Ś & Churchill, G. A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890 (2003).
Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824 (2012).
Malinshky, M., Matschiner, M. & Svardal, H. Dsuite - Fast D-statistics and related admixture evidence from VCF files. Mol. Ecol. Res. 21, 584–595 (2020).
Franchini, P. U. K._Hcyan_1_0. figshare https://doi.org/10.6084/m9.figshare.27122070.v1 (2024).
Acknowledgements
The Mexican government provided permits for collection of fish used in this study (Permiso de Pesca de Fomento 230401-613-03, 2-130409-0961, DAN-01202, and DAN-02939). The LongRead Project of the Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) provided funding and expertise as part of the DcGC Dresden-concept Genome Center, a core facility of the CMCB and Technology Platform of the TUD Dresden University of Technology. The National Geographic Society to CDH, US National Science Foundation (NSF IOS-0919459) to CDH, and Deutsche Forschungsgemeinschaft Taxonomics SPP 1991 and grant (DFG 447185000) to CDH and AM provided funding for this study.
Funding
Open Access funding enabled and organized by Projekt DEAL.
Author information
Authors and Affiliations
Contributions
Conception and Design: C.D.H., P.F., P.M. F.J.G.L., A.M. Data Analysis: C.D.H., P.F., P.M., A.F.K., G. M.-S., M.P., F.J.G.L., E.M. Initial Drafting of Manuscript: C.D.H. Critical Review and Editing of the Manuscript: All authors contributed to the critical review and editing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Madhava Meegaskumbura and Michele Repetto.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Hulsey, C.D., Franchini, P., Masonick, P. et al. Divergence at the IRX gene cluster underlies extreme trophic polymorphism in a cichlid fish (Herichthys minckleyi). Commun Biol (2026). https://doi.org/10.1038/s42003-026-09689-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s42003-026-09689-6


