Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Divergence at the IRX gene cluster underlies extreme trophic polymorphism in a cichlid fish (Herichthys minckleyi)
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 February 2026

Divergence at the IRX gene cluster underlies extreme trophic polymorphism in a cichlid fish (Herichthys minckleyi)

  • C. Darrin Hulsey  ORCID: orcid.org/0000-0002-9653-67281,2,
  • Paolo Franchini  ORCID: orcid.org/0000-0002-8184-14632,3,
  • Paul Masonick2,
  • Andreas Kautt  ORCID: orcid.org/0000-0001-7792-07354,
  • Gonzalo Machado-Schiaffino  ORCID: orcid.org/0000-0002-4049-32472,5,
  • Martin Pippel6,
  • Francisco J. García-de León  ORCID: orcid.org/0000-0003-2323-25607,
  • Eugene Myers  ORCID: orcid.org/0000-0002-6580-78396 &
  • …
  • Axel Meyer  ORCID: orcid.org/0000-0002-0888-81932,8 

Communications Biology , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Adaptive radiation
  • Evolutionary genetics

Abstract

The origin of the extensive phenotypic divergence characterizing adaptive radiation could often be geographically localized and genetically simple. In a classic case of a trophically polymorphic cichlid fish (Herichthys minckleyi), we investigated alternative genomic processes that could have produced its extreme within-population variation in pharyngeal jaw tooth size. First, we generated a high-quality reference genome for its close relative (H. cyanoguttatus) to dissect the genetic architecture of this dental polymorphism. Then, using whole genome resequencing across the small Cuatro Ciénegas valley where H. minckleyi is endemic, we found substantial micro-geographic subdivision and effectively no genetic structure due to pharyngeal morphotype. We also employed quantitative trait loci mapping and genome wide association to pinpoint a single peak in an Iroquois-related (IRX) gene cluster associated with H. minckleyi’s dental divergence. Interspecific introgression in this genomic region appears negligible, suggesting the genomic basis of the polymorphism likely arose within cichlids confined to Cuatro Ciénegas. Because H. minckleyi tooth size disparity is comparable to that found in all Central American cichlids, this offers a striking example of how genomic divergence at a single locus could produce a punctuated burst of eco-morphological divergence that generates phenotypic breadth comparable to a highly diverse cichlid adaptive radiation.

Similar content being viewed by others

The cichlid oral and pharyngeal jaws are evolutionarily and genetically coupled

Article Open access 16 September 2021

Genetic pattern and demographic history of cutlassfish (Trichiurus nanhaiensis) in South China Sea by the influence of Pleistocene climatic oscillations

Article Open access 30 August 2022

Genome-enabled discovery of evolutionary divergence in brains and behavior

Article Open access 21 June 2021

Data availability

The Herichthys cyanogutattus genome assembly, the genomic data used to build and scaffold the contigs (PacBio HiFi long reads, 10x chromium synthetic long reads, Hi-C short reads, and Bionano optical map), and the transcriptomic data used to annotate the protein-coding genes in the genome have been deposited into the NCBI database under BioProject PRJNA1163081. The ddRAD data of the two parents and the 193 F2 individuals used to produce the linkage map and perform QTL mapping of the tooth area have been deposited into the NCBI database under BioProject PRJNA1165996. The WGS data of the 70 individuals, including the two parents of the QTL cross, used to analyze population structure, gene flow, and carry out GWAS, have been deposited into the NCBI database under BioProject PRJNA1167894. The Herichthys cyanogutattus protein-coding gene annotation123 has been deposited into FigShare.

References

  1. Meyer, A. Ecological and evolutionary aspects of the trophic polymorphism in Cichlasoma citrinellum (Pisces, Cichlidae). Biol. J. Linn. Soc. 39, 279–299 (1990).

    Google Scholar 

  2. Smith, T. B. & Skúlason, S. Evolutionary significance of resource polymorphisms in fishes, amphibians, and birds. Ann. Rev. Ecol. Syst. 27, 111–133 (1996).

    Google Scholar 

  3. Kautt, A. F. et al. Contrasting signatures of genomic divergence in rapidly speciating crater lake cichlid fishes. Nature 588, 106–111 (2020).

    Google Scholar 

  4. Hulsey, C. D. & García de León, F. J. Introgressive hybridization in a trophically polymorphic cichlid. Ecol. Evol. 3, 4536–4547 (2013).

    Google Scholar 

  5. Daniels, M. J. & Corbett, L. Redefining introgressed protected mammals: When is a wildcat a wild cat and a dingo a wild dog? Wild. Res. 30, 213–218 (2003).

    Google Scholar 

  6. McGinnity, P. et al. Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc. R. Soc. Lond. B. 270, 2443–2450 (2003).

    Google Scholar 

  7. Riley, S. P. D., Shaffer, H. B., Voss, S. R. & Fitzpatrick, B. M. Hybridization between a rare, native tiger salamander (Ambystoma californiense) and its introduced congener. Ecol. Appl. 13, 1263–1275 (2003).

    Google Scholar 

  8. Seehausen, O. Hybridization and adaptive radiation. Trends Ecol. Evol. 19, 198–207 (2004).

    Google Scholar 

  9. Streelman, J. T. et al. Hybridization and contemporary evolution in an introduced cichlid fish from Lake Malawi National Park. Mol. Ecol. 13, 2471–2479 (2004).

    Google Scholar 

  10. Mims, M. C. et al. Geography disentangles introgression from ancestral polymorphism in Lake Malawi cichlids. Mol. Ecol. 19, 940–951 (2010).

    Google Scholar 

  11. Rieseberg, L. H. et al. Transgressive segregation, adaptation and speciation. Heredity 83, 363–372 (1999).

    Google Scholar 

  12. Stelkens, R. & Seehausen, O. Genetic distance between species predicts novel trait expression in their hybrids. Evolution 63, 884–897 (2009).

    Google Scholar 

  13. Parnell, N. F., Hulsey, C. D. & Streelman, J. T. The genetic basis of a complex functional system. Evolution 66, 3352–3366 (2012).

    Google Scholar 

  14. Holzman, R. & Hulsey, C. D. Mechanical transgressive segregation and the rapid origin of trophic novelty. Sci. Rep. 7, 40306 (2017).

    Google Scholar 

  15. Wainwright, P. C. et al. Evaluating the use of ram and suction during prey capture by cichlid fishes. J. Exp. Biol. 204, 3039–3051 (2001).

    Google Scholar 

  16. Liem, K. F. Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst. Zool. 22, 425–441 (1973).

    Google Scholar 

  17. Wainwright, P. C. et al. The evolution of pharyngognathy: A phylogenetic and functional appraisal of the pharyngeal jaw key innovation in labroid fishes and beyond. Syst. Biol. 61, 1001–1027 (2012).

    Google Scholar 

  18. Ronco, F. et al. Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature 589, 76–81 (2021).

    Google Scholar 

  19. Kornfield, I. L. & Koehn, R. K. Genetic variation and speciation in New World cichlids. Evolution 94, 427–437 (1975).

    Google Scholar 

  20. Sage, R. D. & Selander, R. K. Trophic radiation through polymorphism in cichlid fishes. Proc. Natl. Acad. Sci. USA 72, 4669–4673 (1975).

    Google Scholar 

  21. Trapani, J. Morphological variability in the Cuatro Cienegas cichlid, Cichlasoma minckleyi. J. Fish. Biol. 62, 276–298 (2003).

    Google Scholar 

  22. Hulsey, C. D., Hendrickson, D. A. & García de León, F. J. Trophic morphology, feeding performance, and prey use in the polymorphic fish Herichthys minckleyi. Evol. Ecol. Res 7, 303–324 (2005).

    Google Scholar 

  23. Hulsey, C. D. Function of a key morphological innovation: fusion of the cichlid pharyngeal jaw. Proc. Roy. Soc. Ser. B 273, 669–675 (2006).

    Google Scholar 

  24. Kornfield, I. L. & Taylor, J. N. A new species of polymorphic fish, Cichlasoma minckleyi, from Cuatro Ciénegas, Mexico (Teleostei, Cichlidae). Proc. Biol. Soc. Wash. 96, 253–269 (1983).

    Google Scholar 

  25. Swanson, B. O. et al. Trophic polymorphism and behavioral differences decrease intra-specific competition in a cichlid, Herichthys minckleyi. Ecology 84, 1441–1446 (2003).

    Google Scholar 

  26. Hulsey, C. D. et al. Feeding specialization in Herichthys minckleyi: a trophically polymorphic fish. J. Fish. Biol. 68, 1–12 (2006).

    Google Scholar 

  27. Liem, K. L. & Kaufman, F. Intraspecific macroevolution: functional biology of the polymorphic cichlid species Cichlasoma minckleyi. 203–215. In: Echelle, A. A. & Kornfield, I. (eds.) Evolution of fish species flocks. (University of Maine Press, 1984).

  28. Gingerich, P. D. Size variability of the teeth in living mammals and the diagnosis of closely related sympatric fossil species. J. Paleo. 48, 895–903 (1974).

    Google Scholar 

  29. Kornfield, I. L., Smith, D. C., Gagnon, P. S. & Taylor, J. N. The cichlid fish of Cuatro Ciénegas, Mexico: direct evidence of conspecificity among distinct trophic morphs. Evolution 36, 658–664 (1982).

    Google Scholar 

  30. Hulsey, C. D., García de León, F. J. & Rodiles-Hernández, R. Micro- and macroevolutionary decoupling of cichlid jaws: a test of Liem’s key innovation hypothesis. Evolution 60, 2096–2109 (2006).

    Google Scholar 

  31. Hulsey, C. D., Roberts, R. J., Lin, A. S. P., Guldberg, R. & Streelman, J. T. Convergence in mechanically complex phenotype: Detecting structural adaptations for crushing in cichlid fish. Evolution 62, 1587–1599 (2008).

    Google Scholar 

  32. Magalhaes, I. S. et al. Untangling the evolutionary history of a highly polymorphic species: introgressive hybridization and high genetic structure in the desert cichlid sh Herichtys minckleyi. Mol. Ecol. 24, 4505–4520 (2015).

    Google Scholar 

  33. Bell, K., Nice, C. & Hulsey, C. D. Population genomic evidence reveals subtle patterns of differentiation in the trophically polymorphic Cuatro Ciénegas Cichlid, herichthys minckleyi. Herichthys minckleyi. J. Hered. 110, 361–369 (2019).

    Google Scholar 

  34. Huysseune, A. Phenotypic plasticity in the lower pharyngeal jaw dentition of Astatoreochromis alluaudi (Teleostei: Cichlidae). Arch. Oral. Biol. 40, 1005–1014 (1995).

    Google Scholar 

  35. Karagic, N., Meyer, A. & Hulsey, C. D. Phenotypic plasticity in vertebrate dentitions. Int. Comp. Biol. 60, 608–618 (2020).

    Google Scholar 

  36. Xiong, P. et al. The comparative genomic landscape of adaptive radiation in crater lake cichlid fishes. Mol. Ecol. 30, 955–972 (2021).

    Google Scholar 

  37. Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).

    Google Scholar 

  38. Fruciano, C. et al. Genetic linkage of distinct adaptive traits in sympatrically speciating crater lake cichlid fish. Nat. Commun. 7, 12736 (2016).

    Google Scholar 

  39. Masonick, P., Meyer, A. & Hulsey C. D. A kiss of deep homology: partial convergence in the genomic basis of cichlid fish trophic novelties and human cleft lip. Genom. Biol. Evol. 15, evad072 (2023).

  40. Hulsey, C. D., García de León, F. J., Sanchez-Johnson, Y., Hendrickson, D. A. & Near, T. J. Temporal diversification of Mesoamerican cichlid fishes across a major biogeographic boundary. Mol. Phylog. Evol. 31, 754–764 (2004).

    Google Scholar 

  41. Scherz, M. D., Masonick, P. K., Meyer, A. & Hulsey, C. D. Between a rock and a hard polytomy: phylogenomics of the rock-dwelling mbuna cichlids of Lake Malaŵi. Syst. Biol. 71, 741–757 (2022).

    Google Scholar 

  42. Minckley, W. L. Environments of the bolson of Cuatro Ciénegas: Coahuila Mexico with special reference to the aquatic biota. Univ. Tex. El Paso Sci. Ser. 2, 1–63 (1969).

    Google Scholar 

  43. Chaves-Campos, J., Johnson, S. G. & Hulsey, C. D. Spatial geographic mosaic in an aquatic predator-prey network. PLoS One 6, e22472 (2011).

    Google Scholar 

  44. McGaugh, S. E. Comparative population genetics of aquatic turtles in the desert. Cons. Genet. 13, 1561–1576 (2012).

    Google Scholar 

  45. López-Fernández, H. et al. Testing for ancient adaptive radiations in neotropical cichlid fishes. Evolution 67, 1321–1337 (2013).

    Google Scholar 

  46. Hendrickson, D. A. et al. Combining ecological research and conservation: a case study in Cuatro Ciénegas, Coahuila, Mexico. 127–157. In:. Stevens L, Meretsky V (eds.) Aridland springs in North America: ecology and conservation (The University of Arizona Press, 2008).

  47. Hulsey, C. D. et al. Do relaxed selection and habitat temperature facilitate biased mitogenomic introgression in a narrowly endemic fish? Ecol. Evol. 6, 3684–3698 (2016).

    Google Scholar 

  48. Meier, J. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 14363 (2017).

    Google Scholar 

  49. Chan, W. Y. et al. Hybridization as a conservation management tool. Cons. Lett. 12, e12652 (2019).

    Google Scholar 

  50. Carson, E. W. & Dowling, T. E. Influence of hydrogeographic history and hybridization on the distribution of genetic variation in the pupfishes Cyprinodon atrorus and C. bifasciatus. Mol. Ecol. 15, 667–679 (2006).

    Google Scholar 

  51. Gould, S. & Eldredge, N. Punctuated equilibrium comes of age. Nature 366, 223–227 (1993).

    Google Scholar 

  52. Mayr, E. Speciation and macroevolution. Evolution 36, 1119–1132 (1982).

    Google Scholar 

  53. Kratochwil, C. F. et al. Agouti related peptide 2 facilitates convergent evolution of stripe patterns across cichlid fish radiations. Science 362, 457–460 (2018).

    Google Scholar 

  54. Moran, R. L. et al. Selection-driven trait loss in independently evolved cavefish populations. Nat. Commun. 14, 2557 (2023).

    Google Scholar 

  55. Smith, M. M. Vertebrate dentitions at the origin of jaws: When and how pattern evolved. Evol. Dev. 5, 394–413 (2003).

    Google Scholar 

  56. Rasch, L. J. et al. An ancient dental gene set governs development and continuous regeneration of teeth in sharks. Dev. Biol. 415, 347–370 (2016).

    Google Scholar 

  57. LeBlanc, A. R. H. et al. Iron-coated Komodo dragon teeth and the complex dental enamel of carnivorous reptiles. Nat. Ecol. Evol. 8, 1711–1722 (2024).

    Google Scholar 

  58. Hulsey, C. D. et al. Grand challenges in comparative tooth biology. Int. Comp. Biol. 60, 563–580 (2020).

    Google Scholar 

  59. Machado, F. A. et al. Rules of teeth development align microevolution with macroevolution in extant and extinct primates. Nat. Ecol. Evol. 7, 1729–1739 (2023).

    Google Scholar 

  60. Karagic, N., Schneider, R. F., Meyer, A. & Hulsey, C. D. A genomic cluster with novel and conserved genes is associated with cichlid dental developmental convergence. Mol. Biol. Evol. 37, 3165–3174 (2020).

    Google Scholar 

  61. Fraser, G. J. et al. An ancient gene network is co-opted for teeth on old and new jaws. PLoS Biol. 7, e1000031 (2009).

    Google Scholar 

  62. Jernvall, J. & Thesleff, I. Tooth shape formation and tooth renewal: Evolving with the same signals. Development 139, 3487–3497 (2012).

    Google Scholar 

  63. Tucker, A. S. & Fraser, G. J. Evolution and developmental diversity of tooth regeneration. Semin. Cell Dev. Biol. 25–26, 71–80 (2014).

    Google Scholar 

  64. Hulsey, C. D., Fraser, G. J. & Meyer, A. Biting into the genome to phenome map: developmental genetic modularity of cichlid fish dentitions. Integ. Comp. Biol. 56, 373–388 (2016).

    Google Scholar 

  65. Cleves, P. A. et al. Evolved tooth gain in sticklebacks is associated with a cis-regulatory allele of Bmp6. Proc. Nat. Acad. Sci. USA 111, 13912–13917 (2014).

    Google Scholar 

  66. Kornfield, I. Descriptive genetics of cichlid fishes. 591–616. In B. J. Turner (ed.) Evolutionary genetics of fishes (Plenum Publishing Corporation, 1984).

  67. García de León, F. J., Rodríguez Martínez, R. I. & Hendrickson, D. A. Genetic analysis and conservation status of native populations of largemouth bass in Northeastern Mexico. Am. Fish. Soc. Symp. 82, 635–657 (2015).

    Google Scholar 

  68. Ueshima, R. & Asami, T. Single-gene speciation by left–right reversal. Nature 425, 679 (2003).

    Google Scholar 

  69. Irisarri, I. et al. Phylogenomics uncovers hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nat. Commun. 9, 3159 (2018).

    Google Scholar 

  70. Greenwood, P. H. Explosive speciation in African lakes. Proc. Roy. Inst. G. B. 40, 256–269 (1964).

    Google Scholar 

  71. Fryer, G. & Iles, T. D. The cichlid fishes of the Great Lakes of Africa. (Oliver & Boyd, 1972)

  72. Malinsky, M. et al. Whole-genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. Nat. Ecol. Evol. 2, 1940–1955 (2018).

    Google Scholar 

  73. Houweling, A. C. et al. Gene and cluster-specific expression of the Iroquois family members during mouse development. Mech. Devel. 107, 169–174 (2001).

    Google Scholar 

  74. Fraser, G. J., Bloomquist, R. F. & Streelman, J. T. Common developmental pathways link tooth shape to regeneration. Dev. Biol. 377, 399–414 (2013).

    Google Scholar 

  75. Yu, W. et al. Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation. Dev. Biol. 429, 44–55 (2017).

    Google Scholar 

  76. Hulsey, C. D., García de León, F. J. & Meyer, A. Sexual dimorphism in a trophically polymorphic cichlid fish? J. Morph 276, 1448–1454 (2015).

    Google Scholar 

  77. Tena, J. et al. An evolutionarily conserved three-dimensional structure in the vertebrate Irx clusters facilitates enhancer sharing and coregulation. Nat. Commun. 2, 310 (2011).

    Google Scholar 

  78. Toews, D. P. L. et al. Plumage genes and little else distinguish the genomes of hybridizing warblers. Curr. Biol. 26, 2313–2318 (2016).

    Google Scholar 

  79. McGaugh, S. E. & Noor, M. A. Genomic impacts of chromosomal inversions in parapatric Drosophila species. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 422–429 (2012).

    Google Scholar 

  80. Mérot, C. Making the most of population genomic data to understand the importance of chromosomal inversions for adaptation and speciation. Mol. Ecol. 29, 2513–2516 (2020).

    Google Scholar 

  81. Gingerich, P. D. Rates of evolution: a quantitative synthesis (Cambridge Univ. Press, 2019).

  82. Rolland, J. et al. Conceptual and empirical bridges between micro- and macroevolution. Nat. Ecol. Evol. 7, 1181–1193 (2023).

    Google Scholar 

  83. Schneider, C. A. et al. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Google Scholar 

  84. Hulsey, C. D., Meyer, A. & Streelman, J. T. Convergent evolution of cichlid fish pharyngeal jaw dentitions in mollusk-crushing predators: comparative x-ray computed tomography of tooth sizes, numbers, and replacement. Int. Comp. Biol. 60, 656–664 (2020).

    Google Scholar 

  85. Marwick, B. & Krishnamoorthy, K. cvequality: tests for the equality of coefficients of variation from multiple groups. R package version v.0.1.3. (2019).

  86. Grohme, M. A. et al. The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms. Nature 554, 56–61 (2018).

    Google Scholar 

  87. Nowoshilow, S. et al. The axolotl genome and the evolution of key tissue formation regulators. Nature 554, 50–55 (2018).

    Google Scholar 

  88. Stankova, H. et al. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes. Plant Biotech. J. 14, 1523–1531 (2016).

    Google Scholar 

  89. Ghurye, J. et al. Integrating Hi-C links with assembly graphs for chromosome-scale assembly. PLoS Comput. Biol. 15, e1007273 (2019).

    Google Scholar 

  90. Marks, P. et al. Resolving the full spectrum of human genome variation using Linked-Reads. Genom. Res 29, 635–645 (2019).

    Google Scholar 

  91. Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at https://arxiv.org/abs/1207.3907 (2012).

  92. Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008(2021).

  93. Conte, M. A. et al. A high quality assembly of the Nile Tilapia (Oreochromis niloticus) genome reveals the structure of two sex determination regions. BMC Genom. 18, 341 (2017).

    Google Scholar 

  94. Harris, R. S. Improved Pairwise Alignment of Genomic DNA (Pennsylvania State Univ., 2007).

  95. RepeatModeler (RRID:SCR_015027).

  96. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Google Scholar 

  97. Song, L. & Florea, L. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. Gigascience 4, 48 (2015).

    Google Scholar 

  98. MacManes, M. D. The Oyster River Protocol: a multi-assembler and kmer approach for de novo transcriptome assembly. PeerJ 6, e5428 (2018).

    Google Scholar 

  99. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Google Scholar 

  100. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Google Scholar 

  101. Nishimura, O., Hara, Y. & Kuraku, S. gVolante for standardizing completeness assessment of genome and transcriptome assemblies. Bioinformatics 33, 3635–3637 (2017).

    Google Scholar 

  102. Pychopper (RRID:SCR_018966).

  103. Palmer, J. M. & Stajich, J. Funannotate v1.8.1: Eukaryotic genome annotation. Zenodo. (2020).

  104. Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucl. Acid. Res. 31, 5654–5666 (2003).

    Google Scholar 

  105. UniProtKB/SWISSPROT database (UniProtKB/Swiss-Prot 2022_03).

  106. Slater, G. S. C. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinforma. 6, 31 (2005).

    Google Scholar 

  107. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Google Scholar 

  108. Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).

    Google Scholar 

  109. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Google Scholar 

  110. Tan, A., Abecasis, G. R. & Kang, H. M. Unified representation of genetic variants. Bioinformatics 31, 2202–2204 (2015).

    Google Scholar 

  111. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, s13742-015–0047-8 (2015).

    Google Scholar 

  112. Browning, B. L., Zhou, Y. & Browning, S. R. A one-penny imputed genome from next generation reference panels. Am. J. Hum. Genet. 103, 338–348 (2018).

    Google Scholar 

  113. Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).

    Google Scholar 

  114. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genom. Res. 19, 1655–1664 (2009).

    Google Scholar 

  115. Boulter, J. Coordinate Distance Calculator. https://boulter.com/gps/distance/ (Accessed 1 November 2023).

  116. Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7, e37135 (2012).

    Google Scholar 

  117. Franchini, P., Monné Parera, D., Kautt, A. F. & Meyer, A. quaddRAD: a new high-multiplexing and PCR duplicate removal ddRAD protocol produces novel evolutionary insights in a nonradiating cichlid lineage. Mol. Ecol. 26, 2783–2795 (2017).

    Google Scholar 

  118. Catchen, J. et al. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).

    Google Scholar 

  119. Van Ooijen J. W. JoinMap 4. Software for the Calculation of Genetic Linkage Maps in Experimental Populations. (Kyazma BV, 2006).

  120. Broman, K. W., Wu, H., Sen, Ś & Churchill, G. A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890 (2003).

    Google Scholar 

  121. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824 (2012).

    Google Scholar 

  122. Malinshky, M., Matschiner, M. & Svardal, H. Dsuite - Fast D-statistics and related admixture evidence from VCF files. Mol. Ecol. Res. 21, 584–595 (2020).

    Google Scholar 

  123. Franchini, P. U. K._Hcyan_1_0. figshare https://doi.org/10.6084/m9.figshare.27122070.v1 (2024).

Download references

Acknowledgements

The Mexican government provided permits for collection of fish used in this study (Permiso de Pesca de Fomento 230401-613-03, 2-130409-0961, DAN-01202, and DAN-02939). The LongRead Project of the Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) provided funding and expertise as part of the DcGC Dresden-concept Genome Center, a core facility of the CMCB and Technology Platform of the TUD Dresden University of Technology. The National Geographic Society to CDH, US National Science Foundation (NSF IOS-0919459) to CDH, and Deutsche Forschungsgemeinschaft Taxonomics SPP 1991 and grant (DFG 447185000) to CDH and AM provided funding for this study.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. School of Biology and Environmental Science, University College Dublin, Dublin, Ireland

    C. Darrin Hulsey

  2. Department of Biology, University of Konstanz, Konstanz, Germany

    C. Darrin Hulsey, Paolo Franchini, Paul Masonick, Gonzalo Machado-Schiaffino & Axel Meyer

  3. Department of Ecology and Biology (DEB), Tuscia University, Viterbo, Italy

    Paolo Franchini

  4. Department of Biology, Washington University, St. Louis, MO, USA

    Andreas Kautt

  5. Department of Functional Biology, Area of Genetics, University of Oviedo, Oviedo, Spain

    Gonzalo Machado-Schiaffino

  6. Systems Biology Center, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

    Martin Pippel & Eugene Myers

  7. Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del Noroeste, La Paz, BCS, Mexico

    Francisco J. García-de León

  8. Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA

    Axel Meyer

Authors
  1. C. Darrin Hulsey
    View author publications

    Search author on:PubMed Google Scholar

  2. Paolo Franchini
    View author publications

    Search author on:PubMed Google Scholar

  3. Paul Masonick
    View author publications

    Search author on:PubMed Google Scholar

  4. Andreas Kautt
    View author publications

    Search author on:PubMed Google Scholar

  5. Gonzalo Machado-Schiaffino
    View author publications

    Search author on:PubMed Google Scholar

  6. Martin Pippel
    View author publications

    Search author on:PubMed Google Scholar

  7. Francisco J. García-de León
    View author publications

    Search author on:PubMed Google Scholar

  8. Eugene Myers
    View author publications

    Search author on:PubMed Google Scholar

  9. Axel Meyer
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conception and Design: C.D.H., P.F., P.M. F.J.G.L., A.M. Data Analysis: C.D.H., P.F., P.M., A.F.K., G. M.-S., M.P., F.J.G.L., E.M. Initial Drafting of Manuscript: C.D.H. Critical Review and Editing of the Manuscript: All authors contributed to the critical review and editing of the manuscript.

Corresponding authors

Correspondence to C. Darrin Hulsey or Axel Meyer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Madhava Meegaskumbura and Michele Repetto.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary File

Supplemental Data 1-2

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hulsey, C.D., Franchini, P., Masonick, P. et al. Divergence at the IRX gene cluster underlies extreme trophic polymorphism in a cichlid fish (Herichthys minckleyi). Commun Biol (2026). https://doi.org/10.1038/s42003-026-09689-6

Download citation

  • Received: 27 January 2025

  • Accepted: 30 January 2026

  • Published: 21 February 2026

  • DOI: https://doi.org/10.1038/s42003-026-09689-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing