Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
A dual respiratory and auditory function for the coelacanth lung
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 February 2026

A dual respiratory and auditory function for the coelacanth lung

  • Luigi Manuelli  ORCID: orcid.org/0009-0007-0620-45991,2,
  • Gaël Clément3,
  • Marc Herbin4,
  • Bernd Fritzsch  ORCID: orcid.org/0000-0002-4882-83985,
  • Per E. Ahlberg  ORCID: orcid.org/0000-0001-9054-29006,
  • Kathleen Dollman7 &
  • …
  • Lionel Cavin  ORCID: orcid.org/0000-0001-9666-58641,2 

Communications Biology , Article number:  (2026) Cite this article

  • 1292 Accesses

  • 21 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Evolutionary developmental biology
  • Palaeontology

Abstract

Since the discovery of Latimeria chalumnae, coelacanths have provided a critical comparative framework for reconstructing ancestral sarcopterygian anatomy. However, the function of several anatomical features in both extant and fossil coelacanths remains unresolved. Among these, the presence of large ossified chambers in the body cavity of fossil coelacanths has remained enigmatic, with different studies proposing respiratory or auditory functions. Here, we examine lung and inner ear anatomy based on new observations from synchrotron phase-contrast microCT scans of two 240-million-year-old latimerioid coelacanths, alongside multiple developmental stages of the extant L. chalumnae. These data, combined with archival histological sections of L. chalumnae and 3D reconstructions of a Devonian coelacanth, suggest that extinct coelacanths possessed an ossified lung capable of transmitting sound pressure to auditory sensory epithelia in the inner ear via a perilymphatic system. We propose that the lung of extinct coelacanths supported both respiratory and auditory functions.

Similar content being viewed by others

Towards fully automated inner ear analysis with deep-learning-based joint segmentation and landmark detection framework

Article Open access 04 November 2023

Pulmonary arteries in coelacanths shed light on the vasculature evolution of air-breathing organs in vertebrates

Article Open access 09 May 2024

Central nervous system control of breathing in natural conversation turn-taking

Article Open access 25 August 2025

Data availability

The synchrotron scan files of Graulia branchiodonta (MHNG-GEPI-V5787, holotype and MHNG-GEPI-V5787, referred specimen) are available from the ESRF Paleontology Database (https://paleo.esrf.fr/datasets/2015882168 ; https://paleo.esrf.fr/datasets/2015882170)41,42. The synchrotron scan files of Loreleia eucingulata (MHNG-GEPI-V5789, holotype) will be publicly available from the ESRF Paleontology Database (https://paleo.esrf.fr/) along with surface files of the individual bones. The fossil material housed in the Natural History Museum of Geneva is available for study upon request.

References

  1. Brito, P. M., Meunier, F., Clément, G. & Geffard-Kuriyama, D. The histological structure of the calcified lung of the fossil coelacanth Axelrodichthys araripensis (Actinistia: Mawsoniidae). Palaeontology 53, 1281–1290 (2010).

    Google Scholar 

  2. Clément, A. M. A Late Devonian coelacanth reconfigures actinistian phylogeny, disparity and evolutionary dynamics. Nat. Commun. 15, 7529 (2024).

    Google Scholar 

  3. Woodward, A. S. Catalogue of the Fossil Fishes in the British Museum (Natural History). Part II. 567 (British Museum, 1891).

  4. Cupello, C. Allometric growth in the extant coelacanth lung during ontogenetic development. Nat. Commun. 6, 8222 (2015).

    Google Scholar 

  5. Cupello, C. The long-time adaptation of coelacanths to moderate deep water: reviewing the evidence. Bull. Kitakyushu Mus. Nat. Hist. Hum. Hist. A 17, 29–35 (2019).

    Google Scholar 

  6. Cupello, C. Lung evolution in vertebrates and the water-to-land transition. eLife 11, e74160 (2022).

    Google Scholar 

  7. Cupello, C., Clément, G., Herbin, M., Meunier, F. J. & Brito, P. M. Pulmonary arteries in coelacanths shed light on the vasculature evolution of air-breathing organs in vertebrates. Sci. Rep. 14, 10624 (2024).

    Google Scholar 

  8. Cupello, C. The homology and function of the lung plates in extant and fossil coelacanths. Sci. Rep. 7, 9242 (2017).

    Google Scholar 

  9. Christensen, C. B., Christensen-Dalsgaard, J. & Madsen, P. T. Hearing of the African lungfish (Protopterus annectens) suggests underwater pressure detection and rudimentary aerial hearing in early tetrapods. J. Exp. Biol. 218, 381–387 (2015).

    Google Scholar 

  10. Schellart, N. A. & Popper, A. N. Functional aspects of the evolution of the auditory system of actinopterygian fish. In The Evolutionary Biology of Hearing (eds. Webster, D. B., Fay, R. R. & Popper, A. N.) 295–322 (Springer, 1992).

  11. Rosen, D. E. & Greenwood, P. H. Origin of the Weberian apparatus and the relationships of the ostariophysan and gonorhynchiform fishes. Am. Mus. Novit. 2428, 1–25 (1970).

    Google Scholar 

  12. Millot, J. & Anthony, J. Anatomie de Latimeria chalumnae. Vol. 2: Système nerveux et organes des sens. (CNRS, 1965).

  13. Fritzsch, B. Inner ear of the coelacanth fish Latimeria has tetrapod affinities. Nature 327, 153–154 (1987).

    Google Scholar 

  14. Fritzsch, B., Schultze, H.-P. & Elliott, K. L. The evolution of the various structures required for hearing in Latimeria and tetrapods. IBRO Neurosci. Rep. 14, 325–341 (2023).

    Google Scholar 

  15. Manuelli, L., Mondéjar Fernández, J., Dollman, K. N., Jakata, K. & Cavin, L. The most detailed anatomical reconstruction of a Mesozoic coelacanth. PLOS ONE 19, e0312026 (2024).

    Google Scholar 

  16. Reis, O. M. Die Coelacanthinen, mit besonderer Berücksichtigung der im Weissen Jura Bayerns vorkommenden Gattungen. Palaeontographica 35, 1–96 (1888).

    Google Scholar 

  17. Nulens, R., Scott, L. & Herbin, M. An Updated Inventory of All Known Specimens of the Coelacanth, Latimeria spp. (South African Institute for Aquatic Biodiversity, 2011).

  18. Fritzsch, B. & Elliott, K. L. Fish hearing revealed: Do we understand hearing in critical fishes and marine tetrapods?. J. Acoust. Soc. Am. 154, 3019–3026 (2023).

    Google Scholar 

  19. Kasumyan, A. Structure and function of the auditory system in fishes. J. Ichthyol. 45, 223–270 (2005).

    Google Scholar 

  20. Bernstein, P. The ear region of Latimeria chalumnae: functional and evolutionary implications. Zoology 106, 233–242 (2003).

    Google Scholar 

  21. Bjerring, H. C. The inner ear of crossopterygians. In Evolutionary Biology of Primitive Fishes (eds. Foreman, R. E., Gorbman, A., Dodd, J. M. & Olsson, R.) (Springer, 1985).

  22. Fritzsch, B. The inner ear of vertebrates: phylogenetic patterns and evolutionary significance. In The Evolutionary Biology of Hearing (eds. Webster, D. B., Fay, R. R. & Popper, A. N.) (Springer, 1992).

  23. Fritzsch, B. & Wake, M. H. The inner ear of gymnophione amphibians and its nerve supply: a comparative study of regressive events in a complex sensory system. Zoomorphology 108, 201–217 (1988).

    Google Scholar 

  24. Forey, P. L. History of the Coelacanth Fishes. (Chapman & Hall, 1998).

  25. Stensiö, E. On the Devonian coelacanthids of Germany with special reference to the dermal skeleton. K. Sven. Vetenskapsakad. Handl. 16, 1–67 (1937).

    Google Scholar 

  26. Bjerring, H. C. The nervus rarus in coelacanthiform phylogeny. Zool. Scr. 1, 57–68 (1972).

    Google Scholar 

  27. Smotherman, M. & Narins, P. Evolution of the amphibian ear. In Evolution of the Vertebrate Auditory System (eds. Manley, G. A., Popper, A. N. & Fay, R. R.) 164–199 (Springer, 2004).

  28. Witschi, E. The larval ear of the frog and its transformation during metamorphosis. Z. Naturforsch. 4, 230–242 (1949).

    Google Scholar 

  29. Horowitz, S. S., Chapman, J. A., Kaya, U. & Simmons, A. M. Metamorphic development of the bronchial columella of the larval bullfrog (Rana catesbeiana). Hear. Res. 154, 12–25 (2001).

    Google Scholar 

  30. Bi, X. et al. Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes. Cell 184, 1377–1391 (2021).

    Google Scholar 

  31. Perry, S. F., Wilson, R. J. A., Straus, C., Harris, M. B. & Remmers, J. E. Which came first, the lung or the breath?. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 129, 37–47 (2001).

    Google Scholar 

  32. Cavin, L. & Guinot, G. Coelacanths as “almost living fossils. Front. Ecol. Evol. 2, 49 (2014).

    Google Scholar 

  33. Dutel, H. et al. Neurocranial development of the coelacanth and the evolution of the sarcopterygian head. Nature 569, 556–559 (2019).

    Google Scholar 

  34. Dutel, H. & Tafforeau, P. Latimeria chalumnae—extant coelacanth fetus and pups (Version 1) [Dataset]. European Synchrotron Radiation Facility https://doi.org/10.15151/ESRF-DC-1634387693 (2024).

  35. Lauridsen, H., Pedersen, J. M. H., Ringgaard, S. & Møller, P. R. Buoyancy and hydrostatic balance in a West Indian Ocean coelacanth Latimeria chalumnae. BMC Biol. 20, 180 (2022).

    Google Scholar 

  36. Mirone, A., Brun, E., Gouillart, E., Tafforeau, P. & Kieffer, J. The PyHST2 hybrid distributed code for high-speed tomographic reconstruction. Nucl. Instrum. Methods Phys. Res. B 324, 41–48 (2014).

    Google Scholar 

  37. Paganin, D., Mayo, S. C., Gureyev, T. E., Miller, P. R. & Wilkins, S. W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33–40 (2002).

    Google Scholar 

  38. Manuelli, L., Covain, R. & Cavin, L. A 3D reconstruction of the skull of the West Indian Ocean coelacanth Latimeria chalumnae [Dataset]. MorphoMuseuM e211 https://doi.org/10.18563/journal.m3.211 (2023).

  39. Ferrante, C. & Cavin, L. A deep dive into coelacanth phylogeny. PLoS One 20.6, e0320214 (2025).

    Google Scholar 

  40. Swofford, D. L. PAUP: Phylogenetic Analysis Using Parsimony and Other Methods (Sinauer Associates, 2003).

  41. Manuelli, L., Mondéjar Fernández, J., Dollman, K. N., Jakata, K. & Cavin, L. Graulia branchiodonta gen. et sp. nov., complete holotype MHNG_GEPI_V5787 characterized using propagation phase-contrast synchrotron X-ray micro-computed tomography (Version 1) [Dataset]. European Synchrotron Radiation Facility https://doi.org/10.15151/ESRF-DC-2014789926 (2025).

  42. Manuelli, L., Mondéjar Fernández, J., Dollman, K. N., Jakata, K. & Cavin, L. Graulia branchiodonta gen. et sp. nov., referred specimen MHNG_GEPI_V5788 characterized using propagation phase-contrast synchrotron X-ray micro-computed tomography (Version 1) [Dataset]. European Synchrotron Radiation Facility https://doi.org/10.15151/ESRF-DC-2014789934 (2025).

Download references

Acknowledgements

We thank N. Alvarez for support with the grant application; K. Jakata for performing synchrotron imaging at the ESRF; R. J. Thoni from the AMNH for providing scans of the historical histological sections of L. chalumnae; H. Dutel for collecting synchrotron data of L. chalumnae; J. M. Fernandez and C. Ferrante for discussions; F. Goussard for technical support; the Swiss National Science Foundation for providing funding (https://data.snf.ch/grants/grant/207903).

Author information

Authors and Affiliations

  1. Department of Earth Sciences, Natural History Museum of Geneva, Geneva, Switzerland

    Luigi Manuelli & Lionel Cavin

  2. Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland

    Luigi Manuelli & Lionel Cavin

  3. Centre de Recherche en Paléontologie-Paris (CR2P, MNHN-CNRS-Sorbonne Université), Muséum National d’Histoire Naturelle, Paris, France

    Gaël Clément

  4. Mécanismes Adaptatifs et Evolution (MECADEV, MNHN-CNRS-Sorbonne Université) Muséum National d’Histoire Naturelle, Paris, France

    Marc Herbin

  5. Department of Neuronal Sciences, University of Nebraska Medical Center, Omaha, NE, USA

    Bernd Fritzsch

  6. Department of Organismal Biology, Uppsala University, Uppsala, Sweden

    Per E. Ahlberg

  7. European Synchrotron and Radiation Facility, Grenoble, France

    Kathleen Dollman

Authors
  1. Luigi Manuelli
    View author publications

    Search author on:PubMed Google Scholar

  2. Gaël Clément
    View author publications

    Search author on:PubMed Google Scholar

  3. Marc Herbin
    View author publications

    Search author on:PubMed Google Scholar

  4. Bernd Fritzsch
    View author publications

    Search author on:PubMed Google Scholar

  5. Per E. Ahlberg
    View author publications

    Search author on:PubMed Google Scholar

  6. Kathleen Dollman
    View author publications

    Search author on:PubMed Google Scholar

  7. Lionel Cavin
    View author publications

    Search author on:PubMed Google Scholar

Contributions

L.C. and L.M. conceived and designed the study. L.M. and K.D. developed the methodology. L.M. and L.C. conducted the investigation. L.M. performed data visualization. L.C. acquired funding, administered the project and supervised the study. L.C. and L.M. wrote the original manuscript. L.M., L.C., G.C., M.H., B.F., P.E.A. and K.D. reviewed and edited the manuscript.

Corresponding author

Correspondence to Luigi Manuelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Alice Clement and the other anonymous reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Dennis Higgs and Michele Repetto.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary File

Supplementary Data 1

Supplementary Movie 1

Supplementary Movie 2

Supplementary Movie 3

Supplementary Movie 4

Reporting-summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manuelli, L., Clément, G., Herbin, M. et al. A dual respiratory and auditory function for the coelacanth lung. Commun Biol (2026). https://doi.org/10.1038/s42003-026-09708-6

Download citation

  • Received: 19 May 2025

  • Accepted: 03 February 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s42003-026-09708-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing