Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Early life adversity impairs visually evoked innate defensive behaviors via oxytocin signaling
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 February 2026

Early life adversity impairs visually evoked innate defensive behaviors via oxytocin signaling

  • Huiying Tan1,2,3,
  • Junying Su1,2,
  • Shaohua Ma1,2,
  • Shanping Chen1,2,
  • Qingqing Liu1,2,
  • Xing Yang1,2 &
  • …
  • Liping Wang  ORCID: orcid.org/0000-0001-6893-38091,2,3 

Communications Biology , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Neural circuits
  • Stress and resilience

Abstract

Recent studies have shown that ELA disrupts conditional fear behavior in mice; however, whether ELA affects innate fear behavior remains largely unknown. Here, we report that ELA induced by social deprivation on postnatal days 10–20 impairs looming-evoked innate defensive behaviors via an oxytocin (OT) signaling deficit. ELA leads to decreased OT receptor mRNA levels in the intermediate and deep layers of the superior colliculus (IDSC), and knockdown of this receptor in the superior colliculus mimics the defensive behavior deficit induced by ELA. OT neurons in the paraventricular nucleus of the hypothalamus modulate looming-evoked innate defensive behavior through projections to the IDSC. Moreover, intranasal OT ameliorated ELA-induced deficits in defensive behavior. This study provides a theoretical basis for understanding how ELA induces a fear processing deficit that contributes to psychopathological outcomes and represents an initial step toward identifying potential treatment strategies.

Data availability

Original full blots (Supplementary Fig. 4) and the numerical source data for graphs and charts (Supplementary data 1) have been submitted as supplementary information.

References

  1. Felitti, V. J. et al. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. Advers. Child. Exp. Study Am. J. Prev. Med. 14, 245–258 (1998).

    Google Scholar 

  2. Teicher, M. H., Samson, J. A., Anderson, C. M. & Ohashi, K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat. Rev. Neurosci. 17, 652–666 (2016).

    Google Scholar 

  3. Bhutta, Z. A., Bhavnani, S., Betancourt, T. S., Tomlinson, M. & Patel, V. Adverse childhood experiences and lifelong health. Nat. Med. 29, 1639–1648 (2023).

    Google Scholar 

  4. Huang, R. et al. Adverse childhood experiences and falls in older adults: The mediating role of depression. J. Affect. Disord. 365, 87–94 (2024).

    Google Scholar 

  5. Tan, H. et al. Associations of adverse childhood experiences with falls and fall risk factors among middle-aged and older adults in China. Am. J. Prev. Med. 68, 998–1009 (2025).

    Google Scholar 

  6. Guinn, A. S., Ports, K. A., Ford, D. C., Breiding, M. & Merrick, M. T. Associations between adverse childhood experiences and acquired brain injury, including traumatic brain injuries, among adults: 2014 BRFSS North Carolina. Inj. Prev. 25, 514–520 (2019).

    Google Scholar 

  7. Ford, K., Hughes, K., Cresswell, K., Griffith, N., and Bellis, M. A. Associations between adverse childhood experiences (ACEs) and lifetime experience of car crashes and burns: a cross-sectional study. Int. J. Environ. Res. Public Health 19. https://doi.org/10.3390/ijerph192316036 (2022).

  8. Short, A. K. & Baram, T. Z. Early-life adversity and neurological disease: age-old questions and novel answers. Nat. Rev. Neurol. 15, 657–669 (2019).

    Google Scholar 

  9. Murthy, S. & Gould, E. How early life adversity influences defensive circuitry. Trends Neurosci. 43, 200–212 (2020).

    Google Scholar 

  10. Lesuis, S. L., Lucassen, P. J. & Krugers, H. J. Early life stress impairs fear memory and synaptic plasticity; a potential role for GluN2B. Neuropharmacology 149, 195–203 (2019).

    Google Scholar 

  11. Manzano Nieves, G., Bravo, M., Baskoylu, S., and Bath, K. G. (2020). Early life adversity decreases pre-adolescent fear expression by accelerating amygdala PV cell development. Elife 9. https://doi.org/10.7554/eLife.55263.

  12. Schiff, W., Caviness, J. A. & Gibson, J. J. Persistent fear responses in rhesus monkeys to the optical stimulus of “looming. Science 136, 982–983 (1962).

    Google Scholar 

  13. Ball, W. & Tronick, E. Infant responses to impending collision: optical and real. Science 171, 818–820 (1971).

    Google Scholar 

  14. Yilmaz, M. & Meister, M. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23, 2011–2015 (2013).

    Google Scholar 

  15. Temizer, I., Donovan, J. C., Baier, H. & Semmelhack, J. L. A visual pathway for looming-evoked escape in larval zebrafish. Curr. Biol. 25, 1823–1834 (2015).

    Google Scholar 

  16. Perez-Fernandez, J., Kardamakis, A. A., Suzuki, D. G., Robertson, B. & Grillner, S. Direct dopaminergic projections from the SNc modulate visuomotor transformation in the lamprey tectum. Neuron. 96, 910–924 e915 (2017).

    Google Scholar 

  17. Ache, J. M. et al. Neural basis for looming size and velocity encoding in the Drosophila giant fiber escape pathway. Curr. Biol. 29, 1073–1081 e1074 (2019).

    Google Scholar 

  18. Clery, J. C. et al. Looming and receding visual networks in awake marmosets investigated with fMRI. Neuroimage. 215, 116815 (2020).

    Google Scholar 

  19. Shang, C. et al. BRAIN CIRCUITS. A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science 348, 1472–1477 (2015).

    Google Scholar 

  20. Shang, C. et al. Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nat. Commun. 9, 1232 (2018).

    Google Scholar 

  21. Evans, D. A. et al. A synaptic threshold mechanism for computing escape decisions. Nature 558, 590–594 (2018).

    Google Scholar 

  22. Zhou, Z. et al. A VTA GABAergic neural circuit mediates visually evoked innate defensive responses. Neuron. https://doi.org/10.1016/j.neuron.2019.05.027 (2019).

  23. Wei, P. et al. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat. Commun. 6, 6756 (2015).

    Google Scholar 

  24. Liu, X. et al. Neural circuit underlying individual differences in visual escape habituation. Neuron. https://doi.org/10.1016/j.neuron.2025.04.018 (2025).

  25. Li, L. et al. Stress accelerates defensive responses to looming in mice and involves a locus coeruleus-superior colliculus projection. Curr. Biol. 28, 859–871 e855 (2018).

    Google Scholar 

  26. Ebner, N. C. et al. Associations between oxytocin receptor gene (OXTR) methylation, plasma oxytocin, and attachment across adulthood. Int J. Psychophysiol. 136, 22–32 (2019).

    Google Scholar 

  27. Ellis, B. J., Horn, A. J., Carter, C. S., van, I. M. H. & Bakermans-Kranenburg, M. J. Developmental programming of oxytocin through variation in early-life stress: four meta-analyses and a theoretical reinterpretation. Clin. Psychol. Rev. 86, 101985 (2021).

    Google Scholar 

  28. He, Z. et al. Increased anxiety and decreased sociability induced by paternal deprivation involve the PVN-PrL OTergic pathway. Elife 8, e44026 (2019).

  29. Onaka, T. & Takayanagi, Y. The oxytocin system and early-life experience-dependent plastic changes. J. Neuroendocrinol. e13049. https://doi.org/10.1111/jne.13049 (2021).

  30. Jurek, B. & Neumann, I. D. The oxytocin receptor: from intracellular signaling to behavior. Physiol. Rev. 98, 1805–1908 (2018).

    Google Scholar 

  31. Viviani, D. et al. Oxytocin selectively gates fear responses through distinct outputs from the central amygdala. Science 333, 104–107 (2011).

    Google Scholar 

  32. Knobloch, H. S. et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73, 553–566 (2012).

    Google Scholar 

  33. Hasan, M. T. et al. A fear memory engram and its plasticity in the hypothalamic oxytocin system. Neuron 103, 133–146.e138 (2019).

    Google Scholar 

  34. Pisansky, M. T., Hanson, L. R., Gottesman, I. I. & Gewirtz, J. C. Oxytocin enhances observational fear in mice. Nat. Commun. 8, 2102 (2017).

    Google Scholar 

  35. Menon, R. et al. Oxytocin signaling in the lateral septum prevents social fear during lactation. Curr. Biol. 28, 1066–1078 e1066 (2018).

    Google Scholar 

  36. Son, S. et al. Whole-brain wiring diagram of oxytocin system in adult mice. J. Neurosci. 42, 5021–5033 (2022).

  37. Li, H. et al. Single-neuron projectomes of mouse paraventricular hypothalamic nucleus oxytocin neurons reveal mutually exclusive projection patterns. Neuron. https://doi.org/10.1016/j.neuron.2023.12.022 (2024).

  38. Pena, C. J. et al. Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2. Science 356, 1185–1188 (2017).

    Google Scholar 

  39. Yang, X. et al. A simple threat-detection strategy in mice. BMC Biol. 18, 93 (2020).

    Google Scholar 

  40. Liu, Q. et al. An infrared touch system for automatic behavior monitoring. Neurosci. Bull. 37, 815–830 (2021).

    Google Scholar 

  41. Liu, X. et al. Male and female mice display consistent lifelong ability to address potential life-threatening cues using different post-threat coping strategies. BMC Biol. 20, 281 (2022).

    Google Scholar 

  42. Lischinsky, J. E. & Lin, D. Looming danger: unraveling the circuitry for predator threats. Trends Neurosci. 42, 841–842 (2019).

    Google Scholar 

  43. Lee, M. R. et al. Labeled oxytocin administered via the intranasal route reaches the brain in rhesus macaques. Nat. Commun. 11, 2783 (2020).

    Google Scholar 

  44. Habets, P. C., McLain, C. & Meijer, O. C. Brain areas affected by intranasal oxytocin show higher oxytocin receptor expression. Eur. J. Neurosci. https://doi.org/10.1111/ejn.15447 (2021).

  45. Moerkerke, M. et al. Chronic oxytocin administration stimulates the oxytocinergic system in children with autism. Nat. Commun. 15. https://doi.org/10.1038/s41467-023-44334-4 (2024).

  46. Joushi, S., Taherizadeh, Z., Esmaeilpour, K. & Sheibani, V. Environmental enrichment and intranasal oxytocin administration reverse maternal separation-induced impairments of prosocial choice behavior. Pharmacol. Biochem. Behav. 213. https://doi.org/10.1016/j.pbb.2021.173318 (2022).

  47. Joushi, S., Taherizadeh, Z., Eghbalian, M., Esmaeilpour, K. & Sheibani, V. Boosting decision-making in rat models of early-life adversity with environmental enrichment and intranasal oxytocin. Psychoneuroendocrinology 165. https://doi.org/10.1016/j.psyneuen.2024.107050 (2024).

  48. Birnie, M. T. et al. Plasticity of the reward circuitry after early-life adversity: mechanisms and significance. Biol. Psychiatry 87, 875–884 (2020).

    Google Scholar 

  49. Tooley, U. A., Bassett, D. S. & Mackey, A. P. Environmental influences on the pace of brain development. Nat. Rev. Neurosci. 22, 372–384 (2021).

    Google Scholar 

  50. Kompier, N. F., Keysers, C., Gazzola, V., Lucassen, P. J. & Krugers, H. J. Early life adversity and adult social behavior: focus on arginine vasopressin and oxytocin as potential mediators. Front. Behav. Neurosci. 13, 143 (2019).

    Google Scholar 

  51. Calanni, J. S. et al. Early life stress induces visual dysfunction and retinal structural alterations in adult mice. J. Neurochem. 165, 362–378 (2023).

    Google Scholar 

  52. Luby, J. L., Baram, T. Z., Rogers, C. E. & Barch, D. M. Neurodevelopmental optimization after early-life adversity: cross-species studies to elucidate sensitive periods and brain mechanisms to inform early intervention. Trends Neurosci. 43, 744–751 (2020).

    Google Scholar 

  53. Reh, R. K. et al. Critical period regulation across multiple timescales. Proc. Natl. Acad. Sci. USA 117, 23242–23251 (2020).

    Google Scholar 

  54. Sarro, E. C., Wilson, D. A. & Sullivan, R. M. Maternal regulation of infant brain state. Curr. Biol. 24, 1664–1669 (2014).

    Google Scholar 

  55. Yoshimura, R., Kimura, T., Watanabe, D. & Kiyama, H. Differential expression of oxytocin receptor mRNA in the developing rat brain. Neurosci. Res. 24, 291–304 (1996).

    Google Scholar 

  56. Newmaster, K. T. et al. Quantitative cellular-resolution map of the oxytocin receptor in postnatally developing mouse brains. Nat. Commun. 11, 1885 (2020).

    Google Scholar 

  57. Rickenbacher, E., Perry, R. E., Sullivan, R. M., and Moita, M. A. (2017). Freezing suppression by oxytocin in central amygdala allows alternate defensive behaviours and mother-pup interactions. Elife 6.

  58. Duque-Wilckens, N. et al. Extrahypothalamic oxytocin neurons drive stress-induced social vigilance and avoidance. Proc. Natl. Acad. Sci. USA 117, 26406–26413 (2020).

    Google Scholar 

  59. Humphreys, K. L., Kircanski, K., Colich, N. L. & Gotlib, I. H. Attentional avoidance of fearful facial expressions following early life stress is associated with impaired social functioning. J. Child Psychol. Psychiatry 57, 1174–1182 (2016).

    Google Scholar 

  60. Hein, T. C. & Monk, C. S. Research review: neural response to threat in children, adolescents, and adults after child maltreatment - a quantitative meta-analysis. J. Child Psychol. Psychiatry 58, 222–230 (2017).

    Google Scholar 

  61. Donadon, M. F., Martin-Santos, R. L. & Osório, F. Oxytocin effects on the cognition of women with postpartum depression: a randomized, placebo-controlled clinical trial. Prog. Neuropsychopharmacol. Biol. Psychiatry 111, 110098 (2021).

    Google Scholar 

  62. Zheng, W. et al. Adjunctive intranasal oxytocin for schizophrenia: a meta-analysis of randomized, double-blind, placebo-controlled trials. Schizophr. Res. 206, 13–20 (2019).

    Google Scholar 

  63. Sabe, M., Zhao, N., Crippa, A., Strauss, G. P. & Kaiser, S. Intranasal oxytocin for negative symptoms of schizophrenia: systematic review, meta-analysis, and dose-response meta-analysis of randomized controlled trials. Int J. Neuropsychopharmacol. 24, 601–614 (2021).

    Google Scholar 

  64. Huang, Y., Huang, X., Ebstein, R. P. & Yu, R. Intranasal oxytocin in the treatment of autism spectrum disorders: a multilevel meta-analysis. Neurosci. Biobehav Rev. 122, 18–27 (2021).

    Google Scholar 

  65. Sikich, L. et al. Intranasal oxytocin in children and adolescents with autism spectrum disorder. N. Engl. J. Med. 385, 1462–1473 (2021).

    Google Scholar 

  66. Winterton, A., Westlye, L. T., Steen, N. E., Andreassen, O. A. & Quintana, D. S. Improving the precision of intranasal oxytocin research. Nat. Hum. Behav. 5, 9–18 (2021).

    Google Scholar 

  67. Quintana, D. S. et al. Advances in the field of intranasal oxytocin research: lessons learned and future directions for clinical research. Mol. Psychiatry 26, 80–91 (2021).

    Google Scholar 

  68. Shin, S. et al. Drd3 signaling in the lateral septum mediates early life stress-induced social dysfunction. Neuron 97, 195–208.e196 (2018).

    Google Scholar 

  69. Zheng, J. J. et al. Oxytocin mediates early experience-dependent cross-modal plasticity in the sensory cortices. Nat. Neurosci. 17, 391–399 (2014).

    Google Scholar 

  70. Cetin, A., Komai, S., Eliava, M., Seeburg, P. H. & Osten, P. Stereotaxic gene delivery in the rodent brain. Nat. Protoc. 1, 3166–3173 (2006).

    Google Scholar 

  71. Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5, 439–456 (2010).

    Google Scholar 

  72. Wang, Y. et al. Repeated oxytocin prevents central sensitization by regulating synaptic plasticity via oxytocin receptor in a chronic migraine mouse model. J. Headache Pain 22. https://doi.org/10.1186/s10194-021-01299-3 (2021).

Download references

Acknowledgements

We would like to thank Prof. Xiang Yu (School of Life Sciences, Peking University) for providing the OT-Cre (Jackson Laboratory) and Oxtrflox mice (Jackson Laboratory). This work was supported by the National Key R&D Program of China 2022YFE0140400 (to Qingqing Liu), the National Natural Science Foundation of China (32230042 to Liping Wang and 32200828 to Shanping Chen), Financial Support for Outstanding Talents Training Fund in Shenzhen (to Liping Wang), GuangDong Basic and Applied Basic Research Foundation 2023A1515111193 (to Huiying Tan), the CAS Key Laboratory of Brain Connectome and Manipulation (2019DP173024), and Guangdong Provincial Key Laboratory of Brain Connectome and Behavior (2023B1212060055). We sincerely thank the Shenzhen Brain Science Infrastructure for their essential technical support in this study.

Author information

Authors and Affiliations

  1. CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

    Huiying Tan, Junying Su, Shaohua Ma, Shanping Chen, Qingqing Liu, Xing Yang & Liping Wang

  2. Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

    Huiying Tan, Junying Su, Shaohua Ma, Shanping Chen, Qingqing Liu, Xing Yang & Liping Wang

  3. University of Chinese Academy of Sciences, Beijing, China

    Huiying Tan & Liping Wang

Authors
  1. Huiying Tan
    View author publications

    Search author on:PubMed Google Scholar

  2. Junying Su
    View author publications

    Search author on:PubMed Google Scholar

  3. Shaohua Ma
    View author publications

    Search author on:PubMed Google Scholar

  4. Shanping Chen
    View author publications

    Search author on:PubMed Google Scholar

  5. Qingqing Liu
    View author publications

    Search author on:PubMed Google Scholar

  6. Xing Yang
    View author publications

    Search author on:PubMed Google Scholar

  7. Liping Wang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Liping Wang and Huiying Tan designed the study and the experiments. Huiying Tan, Junying Su, and Shaohua Ma performed the experiments. Shanping Chen analyzed the data. Huiying Tan drafted the manuscript. Qingqing Liu and Xing Yang commented on the manuscript. Liping Wang supervised all aspects of this study.

Corresponding author

Correspondence to Liping Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Claire-Dominique Walker, Emily C. Wright and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Fereshteh Nugent and Benjamin Bessieres. [A peer review file is available].

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary information

Description of Additional Supplementary Materials

Supplementary data 1

Reporting summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, H., Su, J., Ma, S. et al. Early life adversity impairs visually evoked innate defensive behaviors via oxytocin signaling. Commun Biol (2026). https://doi.org/10.1038/s42003-026-09738-0

Download citation

  • Received: 27 August 2025

  • Accepted: 10 February 2026

  • Published: 21 February 2026

  • DOI: https://doi.org/10.1038/s42003-026-09738-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing