Table 3 Overall performances (RMSE) on regression downstream tasks. The best results are denoted in bold, and the second-best are indicated with underlining
From: Multimodal fusion with relational learning for molecular property prediction
Data Set | ESOL | FreeSolv | Lipo |
---|---|---|---|
AttentiveFP | 0.877 ± 0.029 | 2.073 ± 0.183 | 0.721 ± 0.001 |
DMPNN | 1.050 ± 0.008 | 2.082 ± 0.082 | 0.683 ± 0.016 |
N-GramRF | 1.074 ± 0.107 | 2.688 ± 0.085 | 0.812 ± 0.028 |
N-GramXGB | 1.083 ± 0.082 | 5.061 ± 0.744 | 2.072 ± 0.030 |
GEM | 0.798 ± 0.029 | 1.877 ± 0.094 | 0.660 ± 0.008 |
Uni-Mol | 0.788 ± 0.029 | 1.620 ± 0.035 | 0.603 ± 0.010 |
MolCLR | 1.113 ± 0.023 | 2.301 ± 0.247 | 0.789 ± 0.009 |
MolCLRCMPNN | 0.911 ± 0.082 | 2.021 ± 0.133 | 0.875 ± 0.003 |
Unimodalityavg | 0.924 ± 0.083 | 1.707 ± 0.126 | 0.587 ± 0.021 |
UnimodalityMax | 0.761 ± 0.068 | 1.437 ± 0.134 | 0.537 ± 0.005 |
MMFRLearly | 1.037 ± 0.170 | 2.093 ± 0.090 | 0.607 ± 0.034 |
MMFRLintermediate | 0.730 ± 0.023 | 1.465 ± 0.117 | 0.552 ± 0.017 |
MMFRLlate | 0.763 ± 0.035 | 1.741 ± 0.191 | 0.525 ± 0.018 |