Table 1 Performance evaluation on classification datasets from MoleculeNet

From: MolGraph-xLSTM as a graph-based dual-level xLSTM framework for enhanced molecular representation and interpretability

 

Sider

Tox21

Clintox

BBBP

BACE

HIV

 

AUROC

AUPRC

AUROC

AUPRC

AUROC

AUPRC

AUROC

AUPRC

AUROC

AUPRC

AUROC

AUPRC

FP-GNN

0.661  ± 0.014

0.679 ± 0.026

0.833 ± 0.004

0.459 ± 0.018

0.732 ± 0.068

0.622 ± 0.028

0.892 ± 0.019

0.953 ± 0.007

0.852 ± 0.035

0.740 ± 0.042

0.767 ± 0.039

0.328 ± 0.078

DeeperGCN

0.622 ± 0.031

0.660 ± 0.025

0.840 ± 0.010

0.434 ± 0.021

0.892 ± 0.048

0.741 ± 0.048

0.860 ± 0.014

0.937 ± 0.008

0.830 ± 0.033

0.719 ± 0.039

0.769 ± 0.041

0.300 ± 0.064

DMPNN

0.658 ± 0.032

0.680 ± 0.030

0.849 ± 0.006

0.481 ± 0.026

0.895 ± 0.010

0.727 ± 0.062

0.896 ± 0.014

0.956 ± 0.016

0.851 ± 0.028

0.742 ± 0.043

0.758 ± 0.029

0.278 ± 0.043

HiGNN

0.656 ± 0.024

0.669 ± 0.027

0.844 ± 0.006

0.462 ± 0.018

0.889 ± 0.026

0.735 ± 0.070

0.892 ± 0.014

0.943 ± 0.017

0.836 ± 0.029

0.740 ± 0.048

0.768 ± 0.038

0.310 ± 0.066

TransFoxMol

0.636 ± 0.022

0.686 ± 0.040

0.816 ± 0.011

0.367 ± 0.011

0.830 ± 0.047

0.624 ± 0.036

0.881 ± 0.015

0.947 ± 0.005

0.801 ± 0.054

0.693 ± 0.079

0.727 ± 0.037

0.232 ± 0.063

BiLSTM

0.590 ± 0.008

0.631 ± 0.023

0.807 ± 0.011

0.382 ± 0.008

0.987 ± 0.009

0.947 ± 0.023

0.943 ± 0.020

0.985 ± 0.003

0.826 ± 0.052

0.807 ± 0.076

0.769 ± 0.040

0.305 ± 0.040

AutoML

0.682 ± 0.017

0.699 ± 0.029

0.828 ± 0.004

0.468 ± 0.022

0.875 ± 0.058

0.645 ± 0.018

0.928 ± 0.013

0.969 ± 0.019

0.840 ± 0.013

0.753 ± 0.018

0.772 ± 0.033

0.351 ± 0.078

MolGraph-xLSTM (Ours)

0.697 ± 0.022

0.713 ± 0.032

0.854 ± 0.003

0.487 ± 0.045

0.904 ± 0.032

0.714 ± 0.026

0.959 ± 0.006

0.987 ± 0.002

0.869 ± 0.016

0.784 ± 0.029

0.775 ± 0.027

0.355 ± 0.050

  1. Best results are shown in bold.