Table 4 Performance evaluation on regression datasets from TDC
 | Caco2 | PPBR | LD50 | |||
---|---|---|---|---|---|---|
 | RMSE | PCC | RMSE | PCC | RMSE | PCC |
FP-GNN | 0.408 ± 0.056 | 0.835 ± 0.027 | 12.238 ± 1.194 | 0.614 ± 0.068 | 0.911 ± 0.040 | 0.544 ± 0.046 |
DeeperGCN | 0.624 ± 0.034 | 0.470 ± 0.112 | 14.634 ± 0.392 | 0.305 ± 0.040 | 0.951 ± 0.063 | 0.472 ± 0.109 |
DMPNN | 0.487 ± 0.103 | 0.796 ± 0.023 | 12.497 ± 0.230 | 0.588 ± 0.031 | 0.859 ± 0.035 | 0.608 ± 0.033 |
HiGNN | 0.457 ± 0.064 | 0.794 ± 0.043 | 13.247 ± 0.724 | 0.554 ± 0.056 | 0.941 ± 0.038 | 0.523 ± 0.034 |
TransFoxMol | 0.596 ± 0.082 | 0.719 ± 0.071 | 13.638 ± 0.349 | 0.512 ± 0.027 | 0.922 ± 0.053 | 0.538 ± 0.066 |
BiLSTM | 0.611 ± 0.051 | 0.528 ± 0.103 | 13.930 ± 0.284 | 0.416 ± 0.041 | 0.980 ± 0.029 | 0.446 ± 0.038 |
AutoML | 0.403 ± 0.014 | 0.820 ± 0.009 | 13.565 ± 0.139 | 0.471 ± 0.016 | 0.841 ± 0.011 | 0.622 ± 0.012 |
MolGraph-xLSTM (ours) | 0.358 ± 0.015 | 0.861 ± 0.011 | 11.772 ± 0.200 | 0.644 ± 0.019 | 0.871 ± 0.026 | 0.600 ± 0.026 |