Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
Postselection-free experimental observation of the measurement-induced phase transition in circuits with universal gates
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 February 2026

Postselection-free experimental observation of the measurement-induced phase transition in circuits with universal gates

  • Xiaozhou Feng  ORCID: orcid.org/0000-0001-9844-65851,
  • Jeremy Côté  ORCID: orcid.org/0000-0001-9594-21452,
  • Stefanos Kourtis  ORCID: orcid.org/0000-0002-9187-80672 &
  • …
  • Brian Skinner  ORCID: orcid.org/0000-0003-0774-35633 

Communications Physics , Article number:  (2026) Cite this article

  • 1073 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Phase transitions and critical phenomena
  • Quantum information
  • Theoretical physics

Abstract

Monitored many-body quantum systems can exhibit a measurement-induced phase transition (MIPT) between entangling and disentangling dynamical phases. Proposed approaches to study the MIPT experimentally typically rely on a classical decoding process, but the complexity of this decoding generally grows exponentially with the system size unless the dynamics is restricted to a fine-tuned set of unitary operators. In this work we overcome this difficulty in the context of tree-shaped quantum circuits. We construct a hybrid circuit with Haar-random unitary operators, and we show that the MIPT can be detected without postselection using a simple decoding process whose complexity grows linearly with the number of qubits. The tree structure also enables a complete theoretical description of the MIPT and all its critical properties. We experimentally realize the MIPT on a trapped-ion quantum computer and show that the results are precisely described by theory without the need for error mitigation.

Similar content being viewed by others

Measurement-induced entanglement phase transition on a superconducting quantum processor with mid-circuit readout

Article 08 June 2023

Measurement-induced quantum phases realized in a trapped-ion quantum computer

Article 02 June 2022

Neural-network decoders for measurement induced phase transitions

Article Open access 22 May 2023

Data availability

Data for this experiment is available at a public Zenodo repository60. We include the measurement outcomes and circuits we used for the experiment.

Code availability

Code for this experiment is available at a public Zenodo repository60. We include code to create the circuits and analyze the data, as well as code for classically simulating the order parameter.

References

  1. Skinner, B., Ruhman, J. & Nahum, A. Measurement-induced phase transitions in the dynamics of entanglement. Phys. Rev. X 9, 031009 (2019).

    Google Scholar 

  2. Li, Y., Chen, X. & Fisher, M. P. A. Quantum zeno effect and the many-body entanglement transition. Phys. Rev. B 98, 205136 (2018).

    Google Scholar 

  3. Chan, A., Nandkishore, R. M., Pretko, M. & Smith, G. Unitary-projective entanglement dynamics. Phys. Rev. B 99, 224307 (2019).

    Google Scholar 

  4. Li, Y., Chen, X. & Fisher, M. P. A. Measurement-driven entanglement transition in hybrid quantum circuits. Phys. Rev. B 100, 134306 (2019).

    Google Scholar 

  5. Choi, S., Bao, Y., Qi, X.-L. & Altman, E. Quantum error correction in scrambling dynamics and measurement-induced phase transition. Phys. Rev. Lett. 125, 030505 (2020).

    Google Scholar 

  6. Gullans, M. J. & Huse, D. A. Dynamical purification phase transition induced by quantum measurements. Phys. Rev. X 10, 041020 (2020).

    Google Scholar 

  7. Bao, Y., Choi, S. & Altman, E. Theory of the phase transition in random unitary circuits with measurements. Phys. Rev. B 101, 104301 (2020).

    Google Scholar 

  8. Jian, C.-M., You, Y.-Z., Vasseur, R. & Ludwig, A. W. W. Measurement-induced criticality in random quantum circuits. Phys. Rev. B 101, 104302 (2020).

    Google Scholar 

  9. Li, Y., Chen, X., Ludwig, A. W. W. & Fisher, M. P. A. Conformal invariance and quantum nonlocality in critical hybrid circuits. Phys. Rev. B 104, 104305 (2021).

    Google Scholar 

  10. Zabalo, A. et al. Critical properties of the measurement-induced transition in random quantum circuits. Phys. Rev. B 101, 060301 (2020).

    Google Scholar 

  11. Gullans, M. J. & Huse, D. A. Scalable probes of measurement-induced criticality. Phys. Rev. Lett. 125, 070606 (2020).

    Google Scholar 

  12. Tang, Q. & Zhu, W. Measurement-induced phase transition: A case study in the nonintegrable model by density-matrix renormalization group calculations. Phys. Rev. Res. 2, 013022 (2020).

    Google Scholar 

  13. Turkeshi, X., Fazio, R. & Dalmonte, M. Measurement-induced criticality in (2+1)-dimensional hybrid quantum circuits. Phys. Rev. B 102, 014315 (2020).

    Google Scholar 

  14. Fan, R., Vijay, S., Vishwanath, A. & You, Y.-Z. Self-organized error correction in random unitary circuits with measurement. Phys. Rev. B 103, 174309 (2021).

    Google Scholar 

  15. Li, Y. & Fisher, M. P. A. Statistical mechanics of quantum error correcting codes. Phys. Rev. B 103, 104306 (2021).

    Google Scholar 

  16. Nahum, A., Roy, S., Skinner, B. & Ruhman, J. Measurement and entanglement phase transitions in all-to-all quantum circuits, on quantum trees, and in Landau-Ginsburg theory. PRX Quantum 2, 010352 (2021).

    Google Scholar 

  17. Li, Y., Vasseur, R., Fisher, M. P. A. & Ludwig, A. W. W. Statistical mechanics model for Clifford random tensor networks and monitored quantum circuits. Phys. Rev. B 109, 174307 (2024).

    Google Scholar 

  18. Lavasani, A., Alavirad, Y. & Barkeshli, M. Measurement-induced topological entanglement transitions in symmetric random quantum circuits. Nat. Phys. 17, 342–347 (2021).

    Google Scholar 

  19. Ippoliti, M., Gullans, M. J., Gopalakrishnan, S., Huse, D. A. & Khemani, V. Entanglement phase transitions in measurement-only dynamics. Phys. Rev. X 11, 011030 (2021).

    Google Scholar 

  20. Lopez-Piqueres, J., Ware, B. & Vasseur, R. Mean-field entanglement transitions in random tree tensor networks. Phys. Rev. B 102, 064202 (2020).

    Google Scholar 

  21. Noel, C. et al. Measurement-induced quantum phases realized in a trapped-ion quantum computer. Nat. Phys. 18, 760–764 (2022).

    Google Scholar 

  22. Ippoliti, M. & Khemani, V. Postselection-free entanglement dynamics via spacetime duality. Phys. Rev. Lett. 126, 060501 (2021).

    Google Scholar 

  23. Li, Y., Zou, Y., Glorioso, P., Altman, E. & Fisher, M. P. A. Cross entropy benchmark for measurement-induced phase transitions. Phys. Rev. Lett. 130, 220404 (2023).

    Google Scholar 

  24. Li, Y., Vijay, S. & Fisher, M. P. Entanglement Domain Walls in Monitored Quantum Circuits and the Directed Polymer in a Random Environment. PRX Quant. 4, 010331 (2023).

    Google Scholar 

  25. Feng, X., Skinner, B. & Nahum, A. Measurement-induced phase transitions on dynamical quantum trees. PRX Quant. 4, 030333 (2023).

    Google Scholar 

  26. Google Quantum AI Collaborators. Measurement-induced entanglement and teleportation on a noisy quantum processor. Nature 622, 481–486 (2023).

    Google Scholar 

  27. Fava, M., Piroli, L., Swann, T., Bernard, D. & Nahum, A. Nonlinear sigma models for monitored dynamics of free fermions. Phys. Rev. X 13, 041045 (2023).

    Google Scholar 

  28. Jian, C.-M., Shapourian, H., Bauer, B. & Ludwig, A. W. W. Measurement-induced entanglement transitions in quantum circuits of non-interacting fermions: Born-rule versus forced measurements (2023). https://arxiv.org/abs/2302.09094.

  29. Agrawal, U. et al. Entanglement and charge-sharpening transitions in u(1) symmetric monitored quantum circuits. Phys. Rev. X 12, 041002 (2022).

    Google Scholar 

  30. Barratt, F., Agrawal, U., Potter, A. C., Gopalakrishnan, S. & Vasseur, R. Transitions in the learnability of global charges from local measurements. Phys. Rev. Lett. 129, 200602 (2022).

    Google Scholar 

  31. Majidy, S. et al. Critical phase and spin sharpening in su(2)-symmetric monitored quantum circuits. Phys. Rev. B 108, 054307 (2023).

    Google Scholar 

  32. Koh, J. M., Sun, S.-N., Motta, M. & Minnich, A. J. Measurement-induced entanglement phase transition on a superconducting quantum processor with mid-circuit readout. Nat. Phys. 19, 1314–1319 (2023).

    Google Scholar 

  33. Ippoliti, M. & Khemani, V. Learnability transitions in monitored quantum dynamics via eavesdropper’s classical shadows. PRX Quantum 5, 020304 (2024).

    Google Scholar 

  34. Akhtar, A. A., Hu, H.-Y. & You, Y.-Z. Measurement-induced criticality is tomographically optimal. Phys. Rev. B 109, 094209 (2024).

    Google Scholar 

  35. Garratt, S. J. & Altman, E. Probing postmeasurement entanglement without postselection. PRX Quantum 5, 030311 (2024).

    Google Scholar 

  36. McGinley, M. Postselection-free learning of measurement-induced quantum dynamics. PRX Quantum 5, 020347 (2024).

    Google Scholar 

  37. Agrawal, U., Lopez-Piqueres, J., Vasseur, R., Gopalakrishnan, S. & Potter, A. C. Observing quantum measurement collapse as a learnability phase transition. Phys. Rev. X 14, 041012 (2024).

    Google Scholar 

  38. Kamakari, H. et al. Experimental demonstration of scalable cross-entropy benchmarking to detect measurement-induced phase transitions on a superconducting quantum processor. Phys. Rev. Lett. 134, 120401 (2025).

    Google Scholar 

  39. Potter, A. C. & Vasseur, R.Entanglement Dynamics in Hybrid Quantum Circuits, 211–249 (Springer International Publishing, Cham, 2022).

  40. Fisher, M. P., Khemani, V., Nahum, A. & Vijay, S. Random quantum circuits. Annu. Rev. Condens. Matter Phys. 14, 335–379 (2023).

    Google Scholar 

  41. Fidkowski, L., Haah, J. & Hastings, M. B. How Dynamical Quantum Memories Forget. Quantum 5, 382 (2021).

    Google Scholar 

  42. Szyniszewski, M., Romito, A. & Schomerus, H. Entanglement transition from variable-strength weak measurements. Phys. Rev. B 100, 064204 (2019).

    Google Scholar 

  43. Szyniszewski, M., Romito, A. & Schomerus, H. Universality of entanglement transitions from stroboscopic to continuous measurements. Phys. Rev. Lett. 125, 210602 (2020).

    Google Scholar 

  44. Côté, J. & Kourtis, S. Qubit vitrification and entanglement criticality on a quantum simulator. Nat. Commun. 13, 7395 (2022).

    Google Scholar 

  45. Feng, X., Fishchenko, N., Gopalakrishnan, S. & Ippoliti, M. Charge and Spin Sharpening Transitions on Dynamical Quantum Trees. Quantum 9, 1692 (2025).

    Google Scholar 

  46. Sommers, G. M., Huse, D. A. & Gullans, M. J. Dynamically generated concatenated codes and their phase diagrams (2024). 2409.13801.

  47. Miller, J. D. & Derrida, B. Weak-disorder expansion for the anderson model on a tree. J. Stat. Phys. 75, 357–388 (1994).

    Google Scholar 

  48. Monthus, C. & Garel, T. Anderson transition on the cayley tree as a traveling wave critical point for various probability distributions. J. Phys. A: Math. Theor. 42, 075002 (2009).

    Google Scholar 

  49. García-Mata, I. et al. Scaling theory of the anderson transition in random graphs: Ergodicity and universality. Phys. Rev. Lett. 118, 166801 (2017).

    Google Scholar 

  50. Shi, Y.-Y., Duan, L.-M. & Vidal, G. Classical simulation of quantum many-body systems with a tree tensor network. Phys. Rev. A 74, 022320 (2006).

    Google Scholar 

  51. Murg, V., Verstraete, F., Legeza, O. & Noack, R. M. Simulating strongly correlated quantum systems with tree tensor networks. Phys. Rev. B 82, 205105 (2010).

    Google Scholar 

  52. Silvi, P. et al. Homogeneous binary trees as ground states of quantum critical hamiltonians. Phys. Rev. A 81, 062335 (2010).

    Google Scholar 

  53. Tagliacozzo, L., Evenbly, G. & Vidal, G. Simulation of two-dimensional quantum systems using a tree tensor network that exploits the entropic area law. Phys. Rev. B 80, 235127 (2009).

    Google Scholar 

  54. Li, W., von Delft, J. & Xiang, T. Efficient simulation of infinite tree tensor network states on the Bethe lattice. Phys. Rev. B 86, 195137 (2012).

    Google Scholar 

  55. Quantinuum H1-1. https://www.quantinuum.com/ (2024).

  56. Derrida, B. & Simon, D. The survival probability of a branching random walk in presence of an absorbing wall. EPL 78, 60006 (2007).

    Google Scholar 

  57. Derrida, B. & Spohn, H. Polymers on disordered trees, spin glasses, and traveling waves. J. Stat. Phys. 51, 817–840 (1988).

    Google Scholar 

  58. Banaszek, K., Cramer, M. & Gross, D. Focus on quantum tomography. N. J. Phys. 15, 125020 (2013).

    Google Scholar 

  59. Sivarajah, S. et al. t∣ket-: a retargetable compiler for NISQ devices. Quantum Sci. Technol. 6, 014003 (2020).

    Google Scholar 

  60. Feng, X., Côté, J., Kourtis, S. & Skinner, B. Data for “postselection-free experimental observation of the measurement-induced phase transition in circuits with universal gates” (2025). https://doi.org/10.5281/zenodo.17516025. Zenodo dataset.

Download references

Acknowledgements

We thank Michael Foss-Feig for assistance with running our circuits on the Quantinuum quantum computers and for suggesting the weak measurement circuit construction in Fig. 3c. We thank Zihan Cheng and Matteo Ippoliti for useful discussions. This work was supported by the Ministère de l’Économie, de l’Innovation et de l’Énergie du Québec via its contributions to its Research Chair in Quantum Computing and to the AlgoLab at Institut quantique, Université de Sherbrooke. S.K. and J.C. were supported by a Natural Sciences and Engineering Research Council of Canada Discovery grant. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

Author information

Authors and Affiliations

  1. Department of Physics, The University of Texas at Austin, Austin, TX, USA

    Xiaozhou Feng

  2. Institut quantique & Département de physique, Université de Sherbrooke, Sherbrooke (Québec), Canada

    Jeremy Côté & Stefanos Kourtis

  3. Department of Physics, The Ohio State University, Columbus, OH, USA

    Brian Skinner

Authors
  1. Xiaozhou Feng
    View author publications

    Search author on:PubMed Google Scholar

  2. Jeremy Côté
    View author publications

    Search author on:PubMed Google Scholar

  3. Stefanos Kourtis
    View author publications

    Search author on:PubMed Google Scholar

  4. Brian Skinner
    View author publications

    Search author on:PubMed Google Scholar

Contributions

X.F. and J.C. contributed equally. X.F. and J.C. developed the code for the experiment and analyzed the results from numerical simulations and experiment. B.S. and S.K. supervised the project. All authors wrote the manuscript.

Corresponding author

Correspondence to Xiaozhou Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Côté, J., Kourtis, S. et al. Postselection-free experimental observation of the measurement-induced phase transition in circuits with universal gates. Commun Phys (2026). https://doi.org/10.1038/s42005-025-02443-0

Download citation

  • Received: 28 September 2025

  • Accepted: 21 November 2025

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s42005-025-02443-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing