Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
Batch Bayesian optimization of attosecond betatron pulses from laser wakefield acceleration
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 18 February 2026

Batch Bayesian optimization of attosecond betatron pulses from laser wakefield acceleration

  • Dominika Maslarova  ORCID: orcid.org/0000-0002-2756-37221,
  • Albert Hansson1,
  • Mufei Luo  ORCID: orcid.org/0009-0009-2363-70241,2,
  • Vojtěch Horný  ORCID: orcid.org/0000-0002-4510-37701,3,
  • Julien Ferri1,
  • Istvan Pusztai  ORCID: orcid.org/0000-0001-5412-40901 &
  • …
  • Tünde Fülöp1 

Communications Physics , Article number:  (2026) Cite this article

  • 394 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Laser-produced plasmas
  • Plasma-based accelerators
  • Ultrafast lasers
  • X-rays

Abstract

Laser wakefield acceleration can generate a femtosecond-scale broadband X-ray betatron radiation pulse from electrons accelerated by an intense laser pulse in a plasma. The micrometer-scale of the source makes wakefield betatron radiation well-suited for advanced imaging techniques, including diffraction and phase-contrast imaging. Recent progress in laser technology can expand these capabilities into the attosecond regime, where the practical applications would significantly benefit from the increased energy contained within the pulse. Here we use numerical simulations combined with batch Bayesian optimization to enhance the radiation produced by an attosecond betatron source. The method enables an efficient exploration of a multi-parameter space and identifies a regime in which a plasma density spike triggers the generation of a high-charge electron beam. This results in an improvement of more than one order of magnitude in the on-axis time-averaged power within the central time containing half of the radiated energy, compared to the reference case without the density spike.

Similar content being viewed by others

Direct observation of a wakefield generated with structured light

Article Open access 08 December 2025

Transverse oscillating bubble enhanced laser-driven betatron X-ray radiation generation

Article Open access 27 June 2022

Plasma-wakefield accelerator simultaneously boosts electron beam energy and brightness

Article Open access 28 November 2025

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

Code availability

The FIKA code developed for this work is available on GitHub under the MIT License58.

References

  1. McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Optical Soc. Am. B 4, 595–601 (1987).

    Google Scholar 

  2. Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B: At. Mol. Optical Phys. 21, L31 (1988).

    Google Scholar 

  3. L’Huillier, A., Schafer, K. & Kulander, K. Higher-order harmonic generation in xenon at 1064 nm: the role of phase matching. Phys. Rev. Lett. 66, 2200 (1991).

    Google Scholar 

  4. Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117 (1994).

    Google Scholar 

  5. Horný, V., Krus, M., Yan, W. & Fülöp, T. Attosecond betatron radiation pulse train. Sci. Rep. 10, 15074 (2020).

    Google Scholar 

  6. Ferri, J., Horný, V. & Fülöp, T. Generation of attosecond electron bunches and x-ray pulses from few-cycle femtosecond laser pulses. Plasma Phys. Control. Fusion 63, 045019 (2021).

    Google Scholar 

  7. Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979).

    Google Scholar 

  8. Luttikhof, M., Khachatryan, A., Van Goor, F. & Boller, K.-J. Generating ultrarelativistic attosecond electron bunches with laser wakefield accelerators. Phys. Rev. Lett. 105, 124801 (2010).

    Google Scholar 

  9. Tooley, M. et al. Towards attosecond high-energy electron bunches: controlling self-injection in laser-wakefield accelerators through plasma-density modulation. Phys. Rev. Lett. 119, 044801 (2017).

    Google Scholar 

  10. Zhao, Q. et al. Sub-femtosecond electron bunches in laser wakefield acceleration via injection suppression with a magnetic field. Plasma Phys. Control. Fusion 61, 085015 (2019).

    Google Scholar 

  11. Kim, J., Wang, T., Khudik, V. & Shvets, G. Subfemtosecond wakefield injector and accelerator based on an undulating plasma bubble controlled by a laser phase. Phys. Rev. Lett. 127, 164801 (2021).

    Google Scholar 

  12. Deng, A., Li, X., Luo, Z., Li, Y. & Zeng, J. Generation of attosecond micro bunched beam using ionization injection in laser wakefield acceleration. Opt. Express 31, 19958–19967 (2023).

    Google Scholar 

  13. Tomassini, P., Horny, V. & Doria, D. Attosecond pulses from ionization injection wakefield accelerators. Instruments 7, 34 (2023).

    Google Scholar 

  14. Sun, T., Zhao, Q., Wan, F., Salamin, Y. I. & Li, J.-X. Generation of ultrabrilliant polarized attosecond electron bunches via dual-wake injection. Phys. Rev. Lett. 132, 045001 (2024).

    Google Scholar 

  15. Tomassini, P. et al. Ultra-high-brightness and tuneable attosecond-long electron beams with the laser wake field acceleration. Sci. Rep. 15, 40794 (2025).

    Google Scholar 

  16. Albert, F. & Thomas, A. G. Applications of laser wakefield accelerator-based light sources. Plasma Phys. Control. Fusion 58, 103001 (2016).

    Google Scholar 

  17. Nemeth, K. et al. Laser-driven coherent betatron oscillation in a laser-wakefield cavity. Phys. Rev. Lett. 100, 095002 (2008).

    Google Scholar 

  18. Cipiccia, S. et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nat. Phys. 7, 867–871 (2011).

    Google Scholar 

  19. Kneip, S. et al. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator. Appl. Phys. Lett. 99, 093701 (2011).

    Google Scholar 

  20. Fourmaux, S., Hallin, E., Chaulagain, U., Weber, S. & Kieffer, J. Laser-based synchrotron X-ray radiation experimental scaling. Opt. Express 28, 3147–3158 (2020).

    Google Scholar 

  21. Cole, J. et al. Laser-wakefield accelerators as hard X-ray sources for 3D medical imaging of human bone. Sci. Rep. 5, 13244 (2015).

    Google Scholar 

  22. Hussein, A. E. et al. Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures. Sci. Rep. 9, 3249 (2019).

    Google Scholar 

  23. Seres, E., Seres, J. & Spielmann, C. X-ray absorption spectroscopy in the keV range with laser-generated high harmonic radiation. Appl. Phys. Lett. 89, 181919 (2006).

  24. Yamada, S. et al. Broadband high-energy resolution hard X-ray spectroscopy using transition edge sensors at Spring-8. Rev. Sci. Instrum. 92, 013103 (2021).

  25. Kiselev, S., Pukhov, A. & Kostyukov, I. X-ray generation in strongly nonlinear plasma waves. Phys. Rev. Lett. 93, 135004 (2004).

    Google Scholar 

  26. Rousse, A. et al. Production of a keV X-Ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93, 135005 (2004).

    Google Scholar 

  27. Corde, S. et al. Femtosecond X rays from laser-plasma accelerators. Rev. Mod. Phys. 85, 1–48 (2013).

    Google Scholar 

  28. Huang, K. et al. Resonantly enhanced betatron hard x-rays from ionization injected electrons in a laser plasma accelerator. Sci. Rep. 6, 27633 (2016).

    Google Scholar 

  29. Mangles, S. P. et al. Laser-wakefield acceleration of monoenergetic electron beams in the first plasma-wave period. Phys. Rev. Lett. 96, 215001 (2006).

    Google Scholar 

  30. Chen, L. et al. Bright betatron X-ray radiation from a laser-driven-clustering gas target. Sci. Rep. 3, 1912 (2013).

    Google Scholar 

  31. Mangles, S. et al. Controlling the spectrum of x-rays generated in a laser-plasma accelerator by tailoring the laser wavefront. Appl. Phys. Lett. 95, https://pubs.aip.org/aip/apl/article/95/18/181106/131664/Controlling-the-spectrum-of-x-rays-generated-in-a (2009).

  32. Popp, A. et al. All-optical steering of laser-wakefield-accelerated electron beams. Phys. Rev. Lett. 105, 215001 (2010).

    Google Scholar 

  33. Wood, J. et al. Enhanced betatron radiation from a laser wakefield accelerator in a long focal length geometry. Gas 1, 2 (2017).

    Google Scholar 

  34. Yan, W. et al. Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble. Proc. Natl. Acad. Sci. 111, 5825–5830 (2014).

    Google Scholar 

  35. Zhang, Z. et al. Enhanced x-rays from resonant betatron oscillations in laser wakefield with external wigglers. Plasma Phys. Control. Fusion 58, 105009 (2016).

    Google Scholar 

  36. Ho, Y.-C. et al. Induction of electron injection and betatron oscillation in a plasma-waveguide-based laser wakefield accelerator by modification of waveguide structure. Phys. Plasmas 20, 083104 (2013).

    Google Scholar 

  37. Wallin, E., Gonoskov, A. & Marklund, M. Radiation emission from braided electrons in interacting wakefields. Phys. Plasmas 24, https://doi.org/10.1063/1.4997440 (2017).

  38. Shaw, J. et al. Role of direct laser acceleration in energy gained by electrons in a laser wakefield accelerator with ionization injection. Plasma Phys. Control. Fusion 56, 084006 (2014).

    Google Scholar 

  39. Zhao, T. et al. High-flux femtosecond x-ray emission from controlled generation of annular electron beams in a laser wakefield accelerator. Phys. Rev. Lett. 117, 094801 (2016).

    Google Scholar 

  40. Ferri, J. & Davoine, X. Enhancement of betatron X rays through asymmetric laser wakefield generated in transverse density gradients. Phys. Rev. Accel. Beams 21, 091302 (2018).

    Google Scholar 

  41. Ma, Y. et al. Angular streaking of betatron X-rays in a transverse density gradient laser-wakefield accelerator. Phys. Plasmas 25, https://pubs.aip.org/aip/pop/article/25/11/113105/263228/Angular-streaking-of-betatron-X-rays-in-a (2018).

  42. Ta Phuoc, K. et al. Betatron radiation from density-tailored plasmas. Phys. Plasmas 15, https://pubs.aip.org/aip/pop/article/15/6/063102/923579/Betatron-radiation-from-density-tailored-plasmas (2008).

  43. Guo, B. et al. Enhancement of laser-driven betatron x-rays by a density-depressed plasma structure. Plasma Phys. Control. Fusion 61, 035003 (2019).

    Google Scholar 

  44. Ferri, J. et al. High-brilliance betatron γ-ray source powered by laser-accelerated electrons. Phys. Rev. Lett. 120, 254802 (2018).

    Google Scholar 

  45. Döpp, A. et al. Energy boost in laser wakefield accelerators using sharp density transitions. Phys. Plasmas 23, https://pubs.aip.org/aip/pop/article/23/5/056702/966617/Energy-boost-in-laser-wakefield-accelerators-using (2016).

  46. Shalloo, R. et al. Automation and control of laser wakefield accelerators using Bayesian optimization. Nat. Commun. 11, 6355 (2020).

    Google Scholar 

  47. Jalas, S. et al. Bayesian optimization of a laser-plasma accelerator. Phys. Rev. Lett. 126, 104801 (2021).

    Google Scholar 

  48. Jalas, S. et al. Tuning curves for a laser-plasma accelerator. Phys. Rev. Accel. Beams 26, 071302 (2023).

    Google Scholar 

  49. Irshad, F. et al. Pareto optimization and tuning of a laser wakefield accelerator. Phys. Rev. Lett. 133, 085001 (2024).

    Google Scholar 

  50. Ferran Pousa, A. et al. Bayesian optimization of laser-plasma accelerators assisted by reduced physical models. Phys. Rev. Accel. Beams 26, 084601 (2023).

    Google Scholar 

  51. Irshad, F., Karsch, S. & Döpp, A. Multi-objective and multi-fidelity Bayesian optimization of laser-plasma acceleration. Phys. Rev. Res. 5, 013063 (2023).

    Google Scholar 

  52. Zhong, J. et al. Simulation of laser plasma wakefield acceleration with external injection based on Bayesian optimization. Plasma Sci. Technol. http://iopscience.iop.org/article/10.1088/2058-6272/ad91e8 (2024).

  53. Valenta, P., Esirkepov, T. Z., Ludwig, J. D., Wilks, S. C. & Bulanov, S. V. Bayesian optimization of electron energy from laser wakefield accelerator. Phys. Rev. Accel. Beams 28, 094601 (2025).

  54. Ye, H. et al. Fast optimization for betatron radiation from laser wakefield acceleration based on Bayesian optimization. Results Phys. 43, 106116 (2022).

    Google Scholar 

  55. Bulanov, S., Naumova, N., Pegoraro, F. & Sakai, J. Particle injection into the wave acceleration phase due to nonlinear wake wave breaking. Phys. Rev. E 58, R5257 (1998).

    Google Scholar 

  56. Lu, W. et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. Spec. Top. Accel. Beams 10, 061301 (2007).

    Google Scholar 

  57. Derouillat, J. et al. Smilei: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation. Comput. Phys. Commun. 222, 351–373 (2018).

    Google Scholar 

  58. Maslarova, D. & Hansson, A. chalmersplasmatheory/fika: Version 1.0 https://doi.org/10.5281/zenodo.15350881 (2025).

  59. Lehe, R., Lifschitz, A., Thaury, C., Malka, V. & Davoine, X. Numerical growth of emittance in simulations of laser-wakefield acceleration. Phys. Rev. ST Accel. Beams 16, 021301 (2013).

    Google Scholar 

  60. Vay, J.-L., Geddes, C., Cormier-Michel, E. & Grote, D. Numerical methods for instability mitigation in the modeling of laser wakefield accelerators in a Lorentz-boosted frame. J. Comput. Phys. 230, 5908–5929 (2011).

    Google Scholar 

  61. Horný, V. et al. Temporal profile of betatron radiation from laser-driven electron accelerators. Phys. Plasmas 24, 063107 (2017).

  62. Pausch, R. et al. Quantitatively consistent computation of coherent and incoherent radiation in particle-in-cell codes-a general form factor formalism for macro-particles. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 909, 419–422 (2018).

    Google Scholar 

  63. Močkus, J. On Bayesian methods for seeking the extremum. In Proc. Optimization Techniques IFIP Technical Conference Novosibirsk, July 1–7, 1974, Vol. 6, 400–404, https://link.springer.com/chapter/10.1007/3-540-07165-2_55 (Springer, 1975).

  64. Jones, D. R., Schonlau, M. & Welch, W. J. Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13, 455–492 (1998).

    Google Scholar 

  65. Ginsbourger, D., Le Riche, R. & Carraro, L. Kriging is well-suited to parallelize optimization. In Computational Intelligence in Expensive Optimization Problems, 131–162, https://link.springer.com/chapter/10.1007/978-3-642-10701-6_6 (Springer, 2010).

  66. SecondMind Labs. Batch Bayesian optimization. https://secondmind-labs.github.io/trieste/4.2.2/notebooks/batch_optimization.html (2024).

Download references

Acknowledgements

The authors are grateful to Patrik Jansson and Ida Ekmark from Chalmers University of Technology, Miroslav Krus from the Institute of Plasma Physics of the Czech Academy of Sciences, Sarah Newton from UKAEA and David Gregocki from CNR—Istituto Nazionale di Ottica for fruitful discussions. This project received funding from the Knut and Alice Wallenberg Foundation (Grants Nos. KAW 2020.0111 and 2023.0249). The computations were enabled by resources provided by the National Academic Infrastructure for Supercomputing in Sweden (NAISS), partially funded by the Swedish Research Council through grant agreement No. 2022-06725, and by EuroHPC Joint Undertaking through access to Karolina at IT4Innovations (VŠB-TU), Czechia under project numberEHPC-REG-2025R01-007, together with Ministry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ (ID:90140). V.H. draws support from the European Union, the Romanian Government and the Health Program, within the project SMIS Code: 326475, and the Romanian Ministry of Research, Innovation and Digitalization: Program Nucleu PN23210105.

Funding

Open access funding provided by Chalmers University of Technology.

Author information

Authors and Affiliations

  1. Department of Physics, Chalmers University of Technology, Göteborg, Sweden

    Dominika Maslarova, Albert Hansson, Mufei Luo, Vojtěch Horný, Julien Ferri, Istvan Pusztai & Tünde Fülöp

  2. Department of Physics, University of Oxford, Oxford, UK

    Mufei Luo

  3. Extreme Light Infrastructure - Nuclear Physics, “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, Măgurele, Romania

    Vojtěch Horný

Authors
  1. Dominika Maslarova
    View author publications

    Search author on:PubMed Google Scholar

  2. Albert Hansson
    View author publications

    Search author on:PubMed Google Scholar

  3. Mufei Luo
    View author publications

    Search author on:PubMed Google Scholar

  4. Vojtěch Horný
    View author publications

    Search author on:PubMed Google Scholar

  5. Julien Ferri
    View author publications

    Search author on:PubMed Google Scholar

  6. Istvan Pusztai
    View author publications

    Search author on:PubMed Google Scholar

  7. Tünde Fülöp
    View author publications

    Search author on:PubMed Google Scholar

Contributions

D.M., J.F. and I.P. conceived the main idea with inputs from V.H. and M.L. D.M., A.H., and M.L. designed the numerical simulations. D.M. and A.H. conducted the numerical simulations and analyzed the results. D.M., T.F. and I.P. wrote the manuscript with inputs from V.H. and M.L.

Corresponding author

Correspondence to Dominika Maslarova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks Davorin Peceli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslarova, D., Hansson, A., Luo, M. et al. Batch Bayesian optimization of attosecond betatron pulses from laser wakefield acceleration. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02542-6

Download citation

  • Received: 08 May 2025

  • Accepted: 03 February 2026

  • Published: 18 February 2026

  • DOI: https://doi.org/10.1038/s42005-026-02542-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing