Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Challenges and opportunities in quantum optimization

Abstract

Quantum computers have demonstrable ability to solve problems at a scale beyond brute-force classical simulation. Interest in quantum algorithms has developed in many areas, particularly in relation to mathematical optimization — a broad field with links to computer science and physics. In this Review, we aim to give an overview of quantum optimization. Provably exact, provably approximate and heuristic settings are first explained using computational complexity theory, and we highlight where quantum advantage is possible in each context. Then, we outline the core building blocks for quantum optimization algorithms, define prominent problem classes and identify key open questions that should be addressed to advance the field. We underscore the importance of benchmarking by proposing clear metrics alongside suitable optimization problems, for appropriate comparisons with classical optimization techniques, and discuss next steps to accelerate progress towards quantum advantage in optimization.

Key points

  • Quantum computing is advancing rapidly, and quantum optimization is a promising area of application.

  • Quantum optimization algorithms — whether provably exact, provably approximate or heuristic — offer opportunities to demonstrate quantum advantage.

  • Systematic benchmarking is crucial to guide research, track progress and further advance understanding of quantum optimization.

  • Theoretical research and empirical research using real hardware can complement each other, in the move towards demonstrating quantum advantage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Complexity classes for optimization problems.
Fig. 2: The optimization-platform ecosystem.

Similar content being viewed by others

References

  1. Grover, L. K. A fast quantum mechanical algorithm for database search. In Proc. Twenty-Eighth Annual ACM Symposium on Theory of Computing 212–219 (Association for Computing Machinery, 1996).

  2. Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355 (1998).

    Article  ADS  Google Scholar 

  3. Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum computation by adiabatic evolution. Preprint at https://arxiv.org/abs/quant-ph/0001106 (2000).

  4. Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014).

  5. Liśkiewicz, M. & Schuster, M. R. A new upper bound for the traveling salesman problem in cubic graphs. J. Discrete Algorithms 27, 1–20 (2014).

    Article  MathSciNet  Google Scholar 

  6. Applegate, D. L., Bixby, R. E., Chvátal, V. & Cook, W. J. On the solution of traveling salesman problems. Doc. Math. 3, 645–656 (1998).

    MathSciNet  Google Scholar 

  7. Applegate, D. L., Bixby, R. E., Chvátal, V. & Cook, W. J. Finding Tours in the TSP. Report No. 99885 (Univ. Bonn, 1999).

  8. Cook, W. J., Cunningham, W. H., Pulleyblank, W. R. & Schrijver, A. in Combinatorial Optimization (eds Cook, W. J. et al.) 356 (John Wiley & Sons, 1997).

  9. Cook, W. J., Applegate, D. L., Bixby, R. E. & Chvatal, V. The Traveling Salesman Problem: A Computational Study (Princeton Univ. Press, 2011).

  10. Cook, W. J. In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation (Princeton Univ. Press, 2012).

  11. Cook, W., Held, S. & Helsgaun, K. Constrained local search for last-mile routing. Transp. Sci. https://doi.org/10.1287/trsc.2022.1185 (2022).

  12. Puchinger, J., Raidl, G. R. & Pferschy, U. The multidimensional knapsack problem: structure and algorithms. INFORMS J. Comput. 22, 250–265 (2010).

    Article  MathSciNet  Google Scholar 

  13. Packebusch, T. & Mertens, S. Low autocorrelation binary sequences. J. Phys. A Math. Theor. 49, 165001 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  14. Spielman, D. A. & Teng, S.-H. Smoothed analysis: an attempt to explain the behavior of algorithms in practice. Commun. ACM 52, 76–84 (2009).

    Article  Google Scholar 

  15. Gonzalez, T. F. (ed.) Handbook of Approximation Algorithms and Metaheuristics: Methologies and Traditional Applications Vol. 1 (CRC Press, 2018).

  16. Ausiello, G. et al. Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties (Springer, 1999).

  17. Gamarnik, D. The overlap gap property: a topological barrier to optimizing over random structures. Proc. Natl Acad. Sci. USA 118, e2108492118 (2021).

    Article  Google Scholar 

  18. Gamarnik, D., Jagannath, A. & Wein, A. S. Hardness of random optimization problems for Boolean circuits, low-degree polynomials, and Langevin dynamics. SIAM J. Comput. https://doi.org/10.1137/22M150263X (2024).

  19. Chou, C.-N., Love, P. J., Sandhu, J. S. & Shi, J. Limitations of local quantum algorithms on random MAX-k-XOR and beyond. Preprint at https://arxiv.org/abs/2108.06049 (2021).

  20. Huang, B. & Sellke, M. Tight Lipschitz hardness for optimizing mean field spin glasses. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS) 312–322 (IEEE, 2022).

  21. Basso, J., Gamarnik, D., Mei, S. & Zhou, L. Performance and limitations of the QAOA at constant levels on large sparse hypergraphs and spin glass models. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS) 335–343 (IEEE, 2022).

  22. Chen, A., Huang, N. & Marwaha, K. Local algorithms and the failure of log-depth quantum advantage on sparse random CSPs. Preprint at https://arxiv.org/abs/2310.01563 (2023).

  23. Johnson, D. S. Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9, 256–278 (1974).

    Article  MathSciNet  Google Scholar 

  24. Håstad, J. Some optimal inapproximability results. J. ACM 48, 798–859 (2001).

    Article  MathSciNet  Google Scholar 

  25. Karpinski, M., Lampis, M. & Schmied, R. New inapproximability bounds for TSP. J. Comput. Syst. Sci. 81, 1665–1677 (2015).

    Article  MathSciNet  Google Scholar 

  26. Karlin, A. R., Klein, N. & Gharan, S. O. A (slightly) improved approximation algorithm for metric TSP. In Proc. 53rd Annual ACM SIGACT Symposium on Theory of Computing 32–45 (Association for Computing Machinery, 2021).

  27. Lee, A. & Xu, B. Classifying approximation algorithms: understanding the APX complexity class. Preprint at https://arxiv.org/abs/2111.01551 (2021).

  28. Arora, S. & Barak, B. Computational Complexity: A Modern Approach (Cambridge Univ. Press, 2009).

  29. Watrous, J. in Encyclopedia of Complexity and Systems Science (ed. Meyers, R. A.) 7174–7201 (Springer, 2009).

  30. Vidick, T. et al. Quantum proofs. Found. Trends Theor. Comput. Sci. 11, 1–215 (2016).

    Article  MathSciNet  Google Scholar 

  31. Arora, S. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45, 753–782 (1998).

    Article  MathSciNet  Google Scholar 

  32. Crama, Y., Elloumi, S., Lambert, A. & Rodriguez-Heck, E. Quadratization and convexification in polynomial binary optimization. Preprint at https://hal.science/hal-03795395 (2022).

  33. Zoufal, C. et al. Variational quantum algorithm for unconstrained black box binary optimization: application to feature selection. Quantum 7, 909 (2023).

    Article  Google Scholar 

  34. Lucas, A. Ising formulations of many NP problems. Front. Phys. https://doi.org/10.3389/fphy.2014.00005 (2014).

  35. Hadfield, S. On the representation of Boolean and real functions as Hamiltonians for quantum computing. ACM Trans. Quantum Comput. 2, 1–21 (2021).

    Article  MathSciNet  Google Scholar 

  36. Glover, F., Kochenberger, G., Hennig, R. & Du, Y. Quantum bridge analytics I: a tutorial on formulating and using QUBO models. Ann. Oper. Res. 314, 141–183 (2022).

    Article  MathSciNet  Google Scholar 

  37. Xavier, P. M. et al. QUBO.jl: a Julia ecosystem for quadratic unconstrained binary optimization. Preprint at https://arxiv.org/abs/2307.02577 (2023).

  38. Karimi, S. & Ronagh, P. Practical integer-to-binary mapping for quantum annealers. Quantum Inf. Process. 18, 94 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  39. Sawaya, N. P., Schmitz, A. T. & Hadfield, S. Encoding trade-offs and design toolkits in quantum algorithms for discrete optimization: coloring, routing, scheduling, and other problems. Quantum 7, 1111 (2023).

    Article  Google Scholar 

  40. Biamonte, J. Nonperturbative k-body to two-body commuting conversion hamiltonians and embedding problem instances into Ising spins. Phys. Rev. A 77, 052331 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  41. Babbush, R., O’Gorman, B. & Aspuru-Guzik, A. Resource efficient gadgets for compiling adiabatic quantum optimization problems. Ann. Phys. 525, 877–888 (2013).

    Article  MathSciNet  Google Scholar 

  42. Barahona, F. On the computational complexity of Ising spin glass models. J. Phys. A Math. Gen. 15, 3241 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  43. Punnen, A. P. (ed.) The Quadratic Unconstrained Binary Optimization Problem: Theory, Algorithms, and Applications (Springer, 2022).

  44. Finnila, A., Gomez, M., Sebenik, C., Stenson, C. & Doll, J. Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219, 343–348 (1994).

    Article  ADS  Google Scholar 

  45. Kato, T. On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Jpn 5, 435–439 (1950).

    Article  ADS  Google Scholar 

  46. van Dam, W., Mosca, M. & Vazirani, U. How powerful is adiabatic quantum computation? In Proc. 42nd IEEE Symposium on Foundations of Computer Science 279–287 (IEEE, 2001).

  47. Matsuda, Y., Nishimori, H. & Katzgraber, H. G. Ground-state statistics from annealing algorithms: quantum versus classical approaches. New J. Phys. 11, 073021 (2009).

    Article  ADS  Google Scholar 

  48. Boixo, S., Albash, T., Spedalieri, F. M., Chancellor, N. & Lidar, D. A. Experimental signature of programmable quantum annealing. Nat. Commun. 4, 2067 (2013).

    Article  ADS  Google Scholar 

  49. Albash, T. & Lidar, D. A. Demonstration of a scaling advantage for a quantum annealer over simulated annealing. Phys. Rev. X 8, 031016 (2018).

    Google Scholar 

  50. Wurtz, J. & Love, P. Maxcut quantum approximate optimization algorithm performance guarantees for p  > 1. Phys. Rev. A 103, 042612 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  51. Ozaeta, A., van Dam, W. & McMahon, P. L. Expectation values from the single-layer quantum approximate optimization algorithm on Ising problems. Quantum Sci. Technol. 7, 045036 (2022).

    Article  ADS  Google Scholar 

  52. Farhi, E., Goldstone, J., Gutmann, S. & Zhou, L. The quantum approximate optimization algorithm and the Sherrington–Kirkpatrick model at infinite size. Quantum 6, 759 (2022).

    Article  Google Scholar 

  53. Basso, J., Farhi, E., Marwaha, K., Villalonga, B. & Zhou, L. The quantum approximate optimization algorithm at high depth for MaxCut on large-girth regular graphs and the Sherrington–Kirkpatrick model. In Proc. 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (eds Le Gall, F. & Morimae, T.) 7:1–7:21 (Leibniz International Proceedings in Informatics, 2022).

  54. Egger, D. J., Mareček, J. & Woerner, S. Warm-starting quantum optimization. Quantum 5, 479 (2021).

    Article  Google Scholar 

  55. Tate, R., Farhadi, M., Herold, C., Mohler, G. & Gupta, S. Bridging classical and quantum with SDP initialized warm-starts for QAOA. ACM Trans. Quantum Comput. 4, 1–39 (2023).

    Article  MathSciNet  Google Scholar 

  56. Mastropietro, D., Korpas, G., Kungurtsev, V. & Marecek, J. Fleming-Viot helps speed up variational quantum algorithms in the presence of barren plateaus. Preprint at https://arxiv.org/abs/2311.18090 (2023).

  57. Bravyi, S., Kliesch, A., Koenig, R. & Tang, E. Obstacles to variational quantum optimization from symmetry protection. Phys. Rev. Lett. 125, 260505 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  58. Bravyi, S., Kliesch, A., Koenig, R. & Tang, E. Hybrid quantum-classical algorithms for approximate graph coloring. Quantum 6, 678 (2022).

    Article  Google Scholar 

  59. Dupont, M. et al. Quantum-enhanced greedy combinatorial optimization solver. Sci. Adv. https://doi.org/10.1126/sciadv.adi0487 (2023).

  60. Brady, L. T. & Hadfield, S. Iterative quantum algorithms for maximum independent set: a tale of low-depth quantum algorithms. Preprint at https://arxiv.org/abs/2309.13110 (2023).

  61. Finžgar, J. R., Kerschbaumer, A., Schuetz, M. J. A., Mendl, C. B. & Katzgraber, H. G. Quantum-informed recursive optimization algorithms. PRX Quantum 5, 020327 (2024).

    Article  ADS  Google Scholar 

  62. Fuller, B. et al. Approximate solutions of combinatorial problems via quantum relaxations. IEEE Trans. Quantum Eng. 5, 1–15 (2024).

    Article  Google Scholar 

  63. Teramoto, K., Raymond, R., Wakakuwa, E. & Imai, H. Quantum-relaxation based optimization algorithms: theoretical extensions. Preprint at https://arxiv.org/abs/2302.09481 (2023).

  64. Goemans, M. X. & Williamson, D. P. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995).

    Article  MathSciNet  Google Scholar 

  65. Farhi, E., Gamarnik, D. & Gutmann, S. The quantum approximate optimization algorithm needs to see the whole graph: a typical case. Preprint at https://arxiv.org/abs/2004.09002 (2020).

  66. Marwaha, K. & Hadfield, S. Bounds on approximating max k XOR with quantum and classical local algorithms. Quantum 6, 757 (2022).

    Article  Google Scholar 

  67. Chou, C.-N., Love, P. J., Sandhu, J. S. & Shi, J. Limitations of local quantum algorithms on random MAX-k-XOR and beyond. In Proc. 49th International Colloquium on Automata, Languages, and Programming (eds Bojańczyk, M. et al.) 41:1–41:20 (Leibniz International Proceedings in Informatics, 2022).

  68. McArdle, S. et al. Variational ansatz-based quantum simulation of imaginary time evolution. npj Quantum Inf. 5, 75 (2019).

    Article  ADS  Google Scholar 

  69. Motta, M. et al. Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nat. Phys. 16, 205–210 (2020).

    Article  Google Scholar 

  70. Lin, S.-H., Dilip, R., Green, A. G., Smith, A. & Pollmann, F. Real- and imaginary-time evolution with compressed quantum circuits. PRX Quantum 2, 010342 (2021).

    Article  Google Scholar 

  71. Yuan, X., Endo, S., Zhao, Q., Li, Y. & Benjamin, S. C. Theory of variational quantum simulation. Quantum 3, 191 (2019).

    Article  Google Scholar 

  72. Gacon, J., Zoufal, C., Carleo, G. & Woerner, S. Stochastic approximation of variational quantum imaginary time evolution. In Proc. 2023 IEEE International Conference on Quantum Computing and Engineering 129–139 (IEEE, 2023).

  73. Aharonov, D. & Naveh, T. Quantum np — a survey. Preprint at https://arxiv.org/abs/quant-ph/0210077 (2002).

  74. Barkoutsos, P. K., Nannicini, G., Robert, A., Tavernelli, I. & Woerner, S. Improving variational quantum optimization using CVaR. Quantum 4, 256 (2020).

    Article  Google Scholar 

  75. Barron, S. V. et al. Provable bounds for noise-free expectation values computed from noisy samples. Nat. Comput. Sci. https://doi.org/10.1038/s43588-024-00709-1 (2023).

  76. Li, L., Fan, M., Coram, M., Riley, P. & Leichenauer, S. Quantum optimization with a novel Gibbs objective function and ansatz architecture search. Phys. Rev. Res. 2, 023074 (2020).

    Article  Google Scholar 

  77. Gilliam, A., Woerner, S. & Gonciulea, C. Grover adaptive search for constrained polynomial binary optimization. Quantum 5, 428 (2021).

    Article  Google Scholar 

  78. Montanaro, A. Quantum speedup of branch-and-bound algorithms. Phys. Rev. Res. 2, 013056 (2020).

    Article  Google Scholar 

  79. Hadfield, S. et al. Quantum approximate optimization with hard and soft constraints. In Proc. Second International Workshop on Post Moores Era Supercomputing 15–21 (Association for Computing Machinery, 2017).

  80. Hadfield, S. et al. From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms 12, 34 (2019).

    Article  MathSciNet  Google Scholar 

  81. Wang, Z., Rubin, N. C., Dominy, J. M. & Rieffel, E. G. xy mixers: analytical and numerical results for the quantum alternating operator ansatz. Phys. Rev. A 101, 012320 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  82. Cook, J., Eidenbenz, S. & Bärtschi, A. The quantum alternating operator ansatz on maximum k-vertex cover. In Proc. 2020 IEEE International Conference on Quantum Computing and Engineering 83–92 (IEEE, 2020).

  83. Bärtschi, A. & Eidenbenz, S. Grover mixers for QAOA: shifting complexity from mixer design to state preparation. In Proc. 2020 IEEE International Conference on Quantum Computing and Engineering 72–82 (IEEE, 2020).

  84. Golden, J., Bärtschi, A., Eidenbenz, S. & O’Malley, D. Numerical evidence for exponential speed-up of QAOA over unstructured search for approximate constrained optimization. In Proc. 2023 IEEE International Conference on Quantum Computing and Engineering 496–505 (IEEE, 2023).

  85. Herman, D. et al. Constrained optimization via quantum zeno dynamics. Commun. Phys. 6, 219 (2023).

    Article  Google Scholar 

  86. Garg, A., Kothari, R., Netrapalli, P. & Sherif, S. No quantum speedup over gradient descent for non-smooth convex optimization. In Proc. 12th Innovations in Theoretical Computer Science Conference (Leibniz International Proceedings in Informatics, 2021).

  87. Garg, A., Kothari, R., Netrapalli, P. & Sherif, S. Near-optimal lower bounds for convex optimization for all orders of smoothness. In Proc. Advances in Neural Information Processing Systems 34 (eds Ranzato, M. et al.) 29874–29884 (NeurIPS, 2021).

  88. Grötschel, M., Lovász, L. & Schrijver, A. Geometric Algorithms and Combinatorial Optimization Vol. 2 (Springer, 2012).

  89. van Apeldoorn, J., Gilyén, A., Gribling, S. & de Wolf, R. Convex optimization using quantum oracles. Quantum 4, 220 (2020).

    Article  Google Scholar 

  90. Chakrabarti, S., Childs, A. M., Li, T. & Wu, X. Quantum algorithms and lower bounds for convex optimization. Quantum 4, 221 (2020).

    Article  Google Scholar 

  91. Arora, S., Hazan, E. & Kale, S. Fast algorithms for approximate semidefinite programming using the multiplicative weights update method. In Proc. 46th Annual IEEE Symposium on Foundations of Computer Science 339–348 (IEEE, 2005).

  92. Brandao, F. G. S. L. & Svore, K. M. Quantum speed-ups for solving semidefinite programs. In Proc. 2017 IEEE 58th Annual Symposium on Foundations of Computer Science 415–426 (IEEE, 2017).

  93. Van Apeldoorn, J., Gilyén, A., Gribling, S. & de Wolf, R. Quantum SDP-solvers: better upper and lower bounds. Quantum 4, 230 (2020).

    Article  Google Scholar 

  94. Brandão, F. G. S. L. et al. Quantum SDP solvers: large speed-ups, optimality, and applications to quantum learning. In Proc. 46th International Colloquium on Automata, Languages, and Programming (eds Baier, C. et al.) 27 (Leibniz International Proceedings in Informatics, 2019).

  95. van Apeldoorn, J. & Gilyén, A. Improvements in quantum SDP-solving with applications. In Proc. 46th International Colloquium on Automata, Languages, and Programming (Leibniz International Proceedings in Informatics, 2019).

  96. van Apeldoorn, J. A Quantum View on Convex Optimization. PhD thesis, Univ. Amsterdam (2020).

  97. Lee, Y. T., Sidford, A. & Wong, S. C.-W. A faster cutting plane method and its implications for combinatorial and convex optimization. In Proc. 2015 IEEE 56th Annual Symposium on Foundations of Computer Science 1049–1065 (IEEE, 2015).

  98. Marecek, J. & Akhriev, A. A cutting-plane method for semidefinite programming with potential applications on noisy quantum devices. Preprint at https://arxiv.org/abs/2110.03400 2021).

  99. Kerenidis, I. & Prakash, A. A quantum interior point method for LPs and SDPs. ACM Trans. Quantum Comput. 1, 1–32 (2020).

    Article  MathSciNet  Google Scholar 

  100. Childs, A. M., Kothari, R. & Somma, R. D. Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput. 46, 1920–1950 (2017).

    Article  MathSciNet  Google Scholar 

  101. Chakraborty, S., Gilyén, A. & Jeffery, S. The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation. In Proc. 46th International Colloquium on Automata, Languages, and Programming 33:1–33:14 (Leibniz International Proceedings in Informatics, 2019).

  102. van Apeldoorn, J., Cornelissen, A., Gilyén, A. & Nannicini, G. Quantum tomography using state-preparation unitaries. In Proc. 2023 Annual ACM–SIAM Symposium on Discrete Algorithms (eds Bansal, N. & Nagarajan, V.) 1265–1318 (SIAM, 2023).

  103. Augustino, B., Nannicini, G., Terlaky, T. & Zuluaga, L. F. Quantum interior point methods for semidefinite optimization. Quantum 7, 1110 (2023).

    Article  Google Scholar 

  104. Mohammadisiahroudi, M., Fakhimi, R. & Terlaky, T. Efficient use of quantum linear system algorithms in inexact infeasible IPMs for linear optimization. J. Optim. Theory Appl. 202, 146–183 (2024).

    Article  MathSciNet  Google Scholar 

  105. Wu, Z., Mohammadisiahroudi, M., Augustino, B., Yang, X. & Terlaky, T. An inexact feasible quantum interior point method for linearly constrained quadratic optimization. Entropy 25, 330 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  106. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum random access memory. Phys. Rev. Lett. 100, 160501 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  107. Giovannetti, V., Lloyd, S. & Maccone, L. Architectures for a quantum random access memory. Phys. Rev. A 78, 052310 (2008).

    Article  ADS  Google Scholar 

  108. Aaronson, S. Read the fine print. Nat. Phys. 11, 291–293 (2015).

    Article  Google Scholar 

  109. Di Matteo, O., Gheorghiu, V. & Mosca, M. Fault tolerant resource estimation of quantum random-access memories. IEEE Trans. Quantum Eng. 1, 1–13 (2020).

    Article  Google Scholar 

  110. Jaques, S. & Rattew, A. G. QRAM: a survey and critique. Preprint at https://arxiv.org/abs/2305.10310 (2023).

  111. Apers, S. & Gribling, S. Quantum speedups for linear programming via interior point methods. Preprint at https://arxiv.org/abs/2311.03215 (2023).

  112. Van Den Brand, J. et al. Minimum cost flows, MDPs, and l1-regression in nearly linear time for dense instances. In Proc. 53rd Annual ACM SIGACT Symposium on Theory of Computing 859–869 (Association for Computing Machinery, 2021).

  113. Leng, J., Hickman, E., Li, J. & Wu, X. Quantum hamiltonian descent. Preprint at https://arxiv.org/abs/2303.01471 (2023).

  114. Augustino, B., Leng, J., Nannicini, G., Terlaky, T. & Wu, X. A quantum central path algorithm for linear optimization. Preprint at https://arxiv.org/abs/2311.03977 (2023).

  115. Liberti, L. Undecidability and hardness in mixed-integer nonlinear programming. RAIRO Oper. Res. 53, 81–109 (2019).

    Article  MathSciNet  Google Scholar 

  116. Zhang, C. & Li, T. Quantum lower bounds for finding stationary points of nonconvex functions. In International Conference on Machine Learning 41268–41299 (PMLR, 2023).

  117. Sidford, A. & Zhang, C. Quantum speedups for stochastic optimization. In Proc. 37th International Conference on Neural Information Processing Systems 35300–35330 (NeurIPS, 2024).

  118. Rebentrost, P., Schuld, M., Wossnig, L., Petruccione, F. & Lloyd, S. Quantum gradient descent and Newton’s method for constrained polynomial optimization. New J. Phys. 21, 073023 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  119. Kerenidis, I. & Prakash, A. Quantum gradient descent for linear systems and least squares. Phys. Rev. A 101, 022316 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  120. Li, K. et al. Optimizing a polynomial function on a quantum processor. npj Quantum Inf. 7, 16 (2021).

    Article  ADS  Google Scholar 

  121. Montanaro, A. Quantum walk speedup of backtracking algorithms. Theory Comput. 14, 1–24 (2018).

    Article  MathSciNet  Google Scholar 

  122. Ambainis, A. & Kokainis, M. Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games. In Proc. 49th Annual ACM SIGACT Symposium on Theory of Computing 989–1002 (Association for Computing Machinery, 2017).

  123. Chakrabarti, S., Minssen, P., Yalovetzky, R. & Pistoia, M. Universal quantum speedup for branch-and-bound, branch-and-cut, and tree-search algorithms. Preprint at https://arxiv.org/abs/2210.03210 (2022).

  124. Dalzell, A. M., Pancotti, N., Campbell, E. T. & Brandão, F. G. Mind the gap: achieving a super-Grover quantum speedup by jumping to the end. In Proc. 55th Annual ACM Symposium on Theory of Computing, 1131–1144 (Association for Computing Machinery, 2023).

  125. Gambella, C., Simonetto, A., Mevissen, M. & Marecek, J. Mixed-binary constrained optimization on quantum computers. US patent 16/395,560 (2020).

  126. Gambella, C. & Simonetto, A. Multiblock ADMM heuristics for mixed-binary optimization on classical and quantum computers. IEEE Trans. Quantum Eng. 1, 1–22 (2020).

    Article  Google Scholar 

  127. Chang, C.-Y., Jones, E., Yao, Y., Graf, P. & Jain, R. On hybrid quantum and classical computing algorithms for mixed-integer programming. Preprint at https://arxiv.org/abs/2010.07852 (2020).

  128. Braine, L., Egger, D. J., Glick, J. & Woerner, S. Quantum algorithms for mixed binary optimization applied to transaction settlement. IEEE Trans. Quantum Eng. 2, 1–8 (2021).

    Article  Google Scholar 

  129. Le, T. V. & Kekatos, V. Variational quantum eigensolver with constraints (VQEC): solving constrained optimization problems via VQE. Preprint at https://arxiv.org/abs/2311.08502 (2023).

  130. Bertsekas, D. P. Constrained Optimization and Lagrange Multiplier Methods (Academic Press, 2014).

  131. Birgin, E. G. & Martínez, J. M. Practical Augmented Lagrangian Methods for Constrained Optimization (SIAM, 2014).

  132. Aspman, J., Bareilles, G., Kungurtsev, V., Marecek, J. & Takáč, M. Hybrid methods in polynomial optimisation. Preprint at https://arxiv.org/abs/2305.16122 (2023).

  133. Dantzig, G. B. & Wolfe, P. Decomposition principle for linear programs. Oper. Res. 8, 101–111 (1960).

    Article  Google Scholar 

  134. Parrilo, P. A. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization (California Institute of Technology, 2000).

  135. Lasserre, J. B. Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001).

    Article  MathSciNet  Google Scholar 

  136. Schoenebeck, G. Linear level Lasserre lower bounds for certain k-CSPs. In 2008 49th Annual IEEE Symposium on Foundations of Computer Science 593–602 (IEEE, 2008).

  137. Burer, S. On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120, 479–495 (2009).

    Article  MathSciNet  Google Scholar 

  138. Dickinson, P. J. Geometry of the copositive and completely positive cones. J. Math. Anal. Appl. 380, 377–395 (2011).

    Article  MathSciNet  Google Scholar 

  139. Dickinson, P. J. & Gijben, L. On the computational complexity of membership problems for the completely positive cone and its dual. Comput. Optim. Appl. 57, 403–415 (2014).

    Article  MathSciNet  Google Scholar 

  140. Brown, R., Neira, D. E. B., Venturelli, D. & Pavone, M. A copositive framework for analysis of hybrid ising-classical algorithms. Preprint at https://arxiv.org/abs/2207.13630 (2023).

  141. Ambainis, A. et al. Quantum speedups for exponential-time dynamic programming algorithms. In Proc. Thirtieth Annual ACM–SIAM Symposium on Discrete Algorithms (ed. Chan, T. M.) 1783–1793 (SIAM, 2019).

  142. Gaspers, S. & Li, J. Z. Quantum algorithms for graph coloring and other partitioning, covering, and packing problems. In Proc. 51st International Colloquium on Automata, Languages, and Programming 69:1–69:20 (Leibniz International Proceedings in Informatics, 2024).

  143. Shimizu, K. & Mori, R. Exponential-time quantum algorithms for graph coloring problems. In Proc. 14th Latin American Symposium (eds Kohayakawa, Y. & Miyazawa, F. K.) 387–398 (Springer, 2020).

  144. Miyamoto, M., Iwamura, M., Kise, K. & Gall, F. L. Quantum speedup for the minimum Steiner tree problem. In Proc. 26th International Conference, COCOON 2020 (eds Kim, D. et al.) 234–245 (Springer, 2020).

  145. Kļevickis, V., Prūsis, K. & Vihrovs, J. Quantum speedups for treewidth. In Proc. 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (eds Gall, F. L. & Morimae, T.) 11:1–11:18 (Leibniz International Proceedings in Informatics, 2022).

  146. Grange, C., Bourreau, E., Poss, M. & T’Kindt, V. Quantum speed-ups for single-machine scheduling problems. In Proc. Companion Conference on Genetic and Evolutionary Computation 2224–2231 (Association for Computing Machinery, 2023).

  147. Bardi, M. et al. Optimal Control and Viscosity Solutions of HamiltonJacobiBellman Equations Vol. 12 (Springer, 1997).

  148. Baras, J. S. & Kurzhanski, A. Nonlinear filtering: the set-membership (bounding) and the h techniques. In Proc. NOLCOS’95 IFAC Workshop 409–415 (IFAC, 1995).

  149. Cornelissen, A. J. Quantum gradient estimation and its application to quantum reinforcement learning. Master thesis, TU Delft (2018).

  150. Dunjko, V., Taylor, J. M. & Briegel, H. J. Quantum-enhanced machine learning. Phys. Rev. Lett. 117, 130501 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  151. Jerbi, S., Cornelissen, A., Ozols, M. & Dunjko, V. Quantum policy gradient algorithms. In Proc. 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (eds Fawzi, O. & Walter, M.) 13:1–13:24 (Leibniz International Proceedings in Informatics, 2023).

  152. Cornelissen, A., Hamoudi, Y. & Jerbi, S. Near-optimal quantum algorithms for multivariate mean estimation. In Proc. 54th Annual ACM SIGACT Symposium on Theory of Computing 33–43 (Association for Computing Machinery, 2022).

  153. Dunjko, V., Liu, Y.-K., Wu, X. & Taylor, J. M. Exponential improvements for quantum-accessible reinforcement learning. Preprint at https://arxiv.org/abs/1710.11160 (2017).

  154. Jerbi, S., Gyurik, C., Marshall, S., Briegel, H. & Dunjko, V. Parametrized quantum policies for reinforcement learning. In Proc. Advances in Neural Information Processing Systems (eds Ranzato, M. et al.) 28362–28375 (NeurIPS, 2021).

  155. Skolik, A., Jerbi, S. & Dunjko, V. Quantum agents in the gym: a variational quantum algorithm for deep Q-learning. Quantum 6, 720 (2022).

    Article  Google Scholar 

  156. Dunning, I., Gupta, S. & Silberholz, J. What works best when? A systematic evaluation of heuristics for Max-Cut and QUBO. INFORMS J. Comput. 30, 608–624 (2018).

    Article  Google Scholar 

  157. Jain, R. The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling (Wiley, 1991).

  158. Koch, T., Berthold, T., Pedersen, J. & Vanaret, C. Progress in mathematical programming solvers from 2001 to 2020. EURO J. Comput. Optim. 10, 100031 (2022).

    Article  MathSciNet  Google Scholar 

  159. Bartz-Beielstein, T. et al. Benchmarking in optimization: best practice and open issues. Preprint at https://arxiv.org/abs/2007.03488 (2020).

  160. Müller, M., Whitney, B., Henschel, R. & Kumaran, K. in Encyclopedia of Parallel Computing (ed. Padua, D.) 1886–1893 (Springer, 2011).

  161. Dongarra, J. J., Moler, C. B., Bunch, J. R. & Stewart, G. W. LINPACK Users’ Guide (SIAM, 1979).

  162. Froleyks, N., Heule, M., Iser, M., Järvisalo, M. & Suda, M. Sat competition 2020. Artif. Intell. 301, 103572 (2021).

    Article  MathSciNet  Google Scholar 

  163. Lubinski, T. et al. Application-oriented performance benchmarks for quantum computing. IEEE Trans. Quantum Eng. 4, 1–32 (2023).

    Article  Google Scholar 

  164. Tomesh, T. et al. SupermarQ: a scalable quantum benchmark suite. In Proc. 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA) 587–603 (IEEE Computer Society, 2022).

  165. Martiel, S., Ayral, T. & Allouche, C. Benchmarking quantum coprocessors in an application-centric, hardware-agnostic, and scalable way. IEEE Trans. Quantum Eng. 2, 1–11 (2021).

    Article  Google Scholar 

  166. Lubinski, T. et al. Optimization applications as quantum performance benchmarks. ACM Trans. Quantum Comput. 5, 1–44 (2024).

    Article  MathSciNet  Google Scholar 

  167. Rønnow, T. F. et al. Defining and detecting quantum speedup. Science 345, 420–424 (2014).

    Article  ADS  Google Scholar 

  168. King, J., Yarkoni, S., Nevisi, M. M., Hilton, J. P. & McGeoch, C. C. Benchmarking a quantum annealing processor with the time-to-target metric. Preprint at https://arxiv.org/abs/1508.05087 (2015).

  169. Albash, T., Martin-Mayor, V. & Hen, I. Temperature scaling law for quantum annealing optimizers. Phys. Rev. Lett. 119, 110502 (2017).

    Article  ADS  Google Scholar 

  170. Juenger, M. et al. Performance of a quantum annealer for Ising ground state computations on chimera graphs. Preprint at https://arxiv.org/abs/1904.11965 (2019).

  171. Jünger, M. et al. Quantum annealing versus digital computing: an experimental comparison. ACM J. Exp. Algorithmics 26,1–30 (2021).

    Article  MathSciNet  Google Scholar 

  172. Perdomo-Ortiz, A. et al. Readiness of quantum optimization machines for industrial applications. Phys. Rev. Appl. 12, 014004 (2019).

    Article  ADS  Google Scholar 

  173. Grant, E., Humble, T. S. & Stump, B. Benchmarking quantum annealing controls with portfolio optimization. Phys. Rev. Appl. 15, 014012 (2021).

    Article  ADS  Google Scholar 

  174. Tasseff, B. et al. On the emerging potential of quantum annealing hardware for combinatorial optimization. J. Heuristics 30, 325–358, (2024).

    Article  Google Scholar 

  175. Willsch, M., Willsch, D., Jin, F., De Raedt, H. & Michielsen, K. Benchmarking the quantum approximate optimization algorithm. Quantum Inf. Process. 19, 197 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  176. Mohseni, N., McMahon, P. L. & Byrnes, T. Ising machines as hardware solvers of combinatorial optimization problems. Nat. Rev. Phys. 4, 363–379 (2022).

    Article  Google Scholar 

  177. Finžgar, J. R., Ross, P., Hölscher, L., Klepsch, J. & Luckow, A. Quark: a framework for quantum computing application benchmarking. In Proc. 2022 IEEE International Conference on Quantum Computing and Engineering 226–237 (IEEE, 2022).

  178. Bäumer, E. et al. Efficient long-range entanglement using dynamic circuits. PRX Quantum 5, 030339 (2024).

    Article  Google Scholar 

  179. Applegate, D. L., Bixby, R. E., Chvatál, V. & Cook, W. J. The Traveling Salesman Problem: A Computational Study (Princeton Univ. Press, 2006).

  180. Rehfeldt, D., Koch, T. & Shinano, Y. Faster exact solution of sparse MaxCut and QUBO problems. Math. Program. Comput. 15, 445–470 (2023).

    Article  MathSciNet  Google Scholar 

  181. Glover, F., Lewis, M. & Kochenberger, G. Logical and inequality implications for reducing the size and difficulty of quadratic unconstrained binary optimization problems. Eur. J. Oper. Res. 265, 829–842 (2018).

    Article  MathSciNet  Google Scholar 

  182. Tsukamoto, S., Takatsu, M., Matsubara, S. & Tamura, H. An accelerator architecture for combinatorial optimization problems. Fujitsu Sci. Tech. J. 53, 8–13 (2017).

    Google Scholar 

  183. Matsubara, S. et al. Digital annealer for high-speed solving of combinatorial optimization problems and its applications. In Proc. 2020 25th Asia and South Pacific Design Automation Conference 667–672 (IEEE, 2020).

  184. Yoshimura, C., Hayashi, M., Takemoto, T. & Yamaoka, M. CMOS annealing machine: a domain-specific architecture for combinatorial optimization problem. In Proc. 2020 25th Asia and South Pacific Design Automation Conference 673–678 (IEEE, 2020).

  185. Goto, H. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network. Sci. Rep. 6, 21686 (2016).

    Article  ADS  Google Scholar 

  186. Wang, J., Ebler, D., Wong, K. Y. M., Hui, D. S. W. & Sun, J. Bifurcation behaviors shape how continuous physical dynamics solves discrete Ising optimization. Nat. Commun. 14, 2510 (2023).

    Article  ADS  Google Scholar 

  187. Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).

    Article  ADS  Google Scholar 

  188. Hangleiter, D., Carolan, J. & Thébault, K. Analogue Quantum Simulation: A New Instrument for Scientific Understanding (Springer, 2022).

  189. Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    Article  Google Scholar 

  190. Trotzky, S. et al. Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nat. Phys. 8, 325–330 (2012).

    Article  Google Scholar 

  191. Choi, J.-Y. et al. Exploring the many-body localization transition in two dimensions. Science 352, 1547–1552 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  192. Parsons, M. F. et al. Site-resolved measurement of the spin-correlation function in the Fermi–Hubbard model. Science 353, 1253–1256 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  193. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    Article  ADS  Google Scholar 

  194. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).

    Article  Google Scholar 

  195. Zhang, J. et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601–604 (2017).

    Article  ADS  Google Scholar 

  196. Arrazola, I., Pedernales, J. S., Lamata, L. & Solano, E. Digital–analog quantum simulation of spin models in trapped ions. Sci. Rep. 6, 30534 (2016).

    Article  ADS  Google Scholar 

  197. Albash, T. & Lidar, D. A. Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  198. McGeoch, C. C. in Adiabatic Quantum Computation and Quantum Annealing 9–27 (Springer, 2014).

  199. Johnson, M. W. et al. Quantum annealing with manufactured spins. Nature 473, 194–198 (2011).

    Article  ADS  Google Scholar 

  200. Ebadi, S. et al. Quantum optimization of maximum independent set using Rydberg atom arrays. Science 376, 1209–1215 (2022).

    Article  ADS  Google Scholar 

  201. Nocedal, J. & Wright, S. J. Numerical Optimization 2nd edn (Springer, 2006).

  202. Bonnans, J., Gilbert, J., Lemarechal, C. & Sagastizábal, C. Numerical Optimization: Theoretical and Practical Aspects (Springer, 2006).

  203. Clark, B. N., Colbourn, C. J. & Johnson, D. S. Unit disk graphs. Discrete Math. 86, 165–177 (1990).

    Article  MathSciNet  Google Scholar 

  204. Pichler, H., Wang, S.-T., Zhou, L., Choi, S. & Lukin, M. D. Quantum optimization for maximum independent set using Rydberg atom arrays. Preprint at https://arxiv.org/abs/1808.10816 (2018).

  205. Wu, X. et al. A concise review of Rydberg atom based quantum computation and quantum simulation. Chin. Phys. B 30, 020305 (2021).

    Article  ADS  Google Scholar 

  206. Andrist, R. S. et al. Hardness of the maximum-independent-set problem on unit-disk graphs and prospects for quantum speedups. Phys. Rev. Res. 5, 043277 (2023).

    Article  Google Scholar 

  207. Pisinger, D. The quadratic knapsack problem — a survey. Discrete Appl. Math. 155, 623–648 (2007).

    Article  MathSciNet  Google Scholar 

  208. Cornuéjols, G. & Dawande, M. A class of hard small 01 programs. INFORMS J. Comput. 11, 205–210 (1999).

    Article  MathSciNet  Google Scholar 

  209. Shaydulin, R. et al. Evidence of scaling advantage for the quantum approximate optimization algorithm on a classically intractable problem. Sci. Adv. 10, eadm6761 (2024).

    Article  Google Scholar 

  210. Burkard, R. E., Karisch, S. E. & Rendl, F. QAPLIB — a quadratic assignment problem library. J. Glob. Optim. 10, 391–403 (1997).

    Article  MathSciNet  Google Scholar 

  211. de Werra, D. in Annals of Discrete Mathematics (11): Studies on Graphs and Discrete Programming (ed. Hansen, P.) 381–395 (Elsevier, 1981).

  212. Van Bulck, D. & Goossens, D. The international timetabling competition on sports timetabling (ITC2021). Eur. J. Oper. Res. 308, 1249–1267 (2023).

    Article  Google Scholar 

  213. Bulck, D. V. et al. Which algorithm to select in sports timetabling? Preprint at https://arxiv.org/abs/2309.03229 (2023).

  214. Slongo, F., Hauke, P., Faccioli, P. & Micheletti, C. Quantum-inspired encoding enhances stochastic sampling of soft matter systems. Sci. Adv. 9, eadi0204 (2023).

    Article  Google Scholar 

  215. Wolsey, L. Integer Programming 2nd edn (John Wiley & Sons, 2020).

  216. Devriendt, J., Gocht, S., Demirović, E., Nordström, J. & Stuckey, P. J. Cutting to the core of pseudo-Boolean optimization: combining core-guided search with cutting planes reasoning. In Proc. Thirty-Fifth AAAI Conference on Artificial Intelligence 3750–3758 (Association for the Advancement of Artificial Intelligence, 2021).

  217. Prasad, M. R., Biere, A. & Gupta, A. A survey of recent advances in SAT-based formal verification. Int. J. Softw. Tools Technol. Transf. 7, 156–173 (2005).

    Article  Google Scholar 

  218. Nethercote, N. et al. MiniZinc: towards a standard CP modelling language. In Proc. 13th International Conference on Principles and Practice of Constraint Programming (ed. Bessière, C.) 529–543 (Springer, 2007).

  219. Kuroiwa, R. & Beck, J. C. Solving domain-independent dynamic programming problems with anytime heuristic search. In Proc. Thirty-Third International Conference on Automated Planning and Scheduling 245–253 (Association for the Advancement of Artificial Intelligence, 2023).

  220. Kim, Y. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023).

    Article  ADS  Google Scholar 

  221. Anand, S., Temme, K., Kandala, A. & Zaletel, M. Classical benchmarking of zero noise extrapolation beyond the exactly-verifiable regime. Preprint at https://arxiv.org/abs/2306.17839 (2023).

  222. Pirnay, N., Ulitzsch, V., Wilde, F., Eisert, J. & Seifert, J.-P. An in-principle super-polynomial quantum advantage for approximating combinatorial optimization problems. Sci. Adv. 10, eadj5170 (2024).

    Article  Google Scholar 

  223. Szegedy, M. Quantum advantage for combinatorial optimization problems, simplified. Preprint at https://arxiv.org/abs/2212.12572 (2022).

  224. Aaronson, S. How much structure is needed for huge quantum speedups? Talk Delivered at the 28th Solvay Physics Conference. Preprint at https://arxiv.org/abs/2209.06930 (2022).

  225. Durr, C. & Hoyer, P. A quantum algorithm for finding the minimum. Preprint at https://arxiv.org/abs/quant-ph/9607014 (1999).

  226. Bulger, D., Baritompa, W. P. & Wood, G. R. Implementing pure adaptive search with Grover’s quantum algorithm. J. Optim. Theory Appl. 116, 517–529 (2003).

    Article  MathSciNet  Google Scholar 

  227. Baritompa, W. P., Bulger, D. W. & Wood, G. R. Grover’s quantum algorithm applied to global optimization. SIAM J. Optim. 15, 1170–1184 (2005).

    Article  MathSciNet  Google Scholar 

  228. Bennett, C. H., Bernstein, E., Brassard, G. & Vazirani, U. Strengths and weaknesses of quantum computing. SIAM J. Comput. 26, 1510–1523 (1997).

    Article  MathSciNet  Google Scholar 

  229. Sommese, A. J. et al. The Numerical Solution of Systems of Polynomials Arising in Engineering and Science (World Scientific, 2005).

  230. Bapst, V., Foini, L., Krzakala, F., Semerjian, G. & Zamponi, F. The quantum adiabatic algorithm applied to random optimization problems: the quantum spin glass perspective. Phys. Rep. 523, 127–205 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  231. Knysh, S. Zero-temperature quantum annealing bottlenecks in the spin-glass phase. Nat. Commun. 7, 12370 (2016).

    Article  ADS  Google Scholar 

  232. Isakov, S. V. et al. Understanding quantum tunneling through quantum Monte Carlo simulations. Phys. Rev. Lett. 117, 180402 (2016).

    Article  ADS  Google Scholar 

  233. Mohseni, N., Navarrete-Benlloch, C., Byrnes, T. & Marquardt, F. Deep recurrent networks predicting the gap evolution in adiabatic quantum computing. Quantum 7, 1039 (2023).

    Article  Google Scholar 

  234. Kitaev, A. Y. Quantum measurements and the Abelian stabilizer problem. Preprint at https://arxiv.org/abs/quant-ph/9511026 (1995).

  235. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  236. Abrams, D. S. & Lloyd, S. Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys. Rev. Lett. 83, 5162–5165 (1999).

    Article  ADS  Google Scholar 

  237. Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).

    Article  ADS  Google Scholar 

  238. Lee, S. et al. Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry. Nat. Commun. 14, 1952 (2023).

    Article  ADS  Google Scholar 

  239. Shor, P. Algorithms for quantum computation: discrete logarithms and factoring. In Proc. 35th Annual Symposium on Foundations of Computer Science 124–134 (IEEE, 1994).

  240. Suchsland, P. et al. Algorithmic error mitigation scheme for current quantum processors. Quantum 5, 492 (2021).

    Article  Google Scholar 

  241. Kirby, W., Motta, M. & Mezzacapo, A. Exact and efficient Lanczos method on a quantum computer. Quantum 7, 1018 (2023).

    Article  Google Scholar 

  242. Geman, S. & Geman, D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6, 721–741 (1984).

    Article  Google Scholar 

  243. Krzakała, F., Montanari, A., Ricci-Tersenghi, F., Semerjian, G. & Zdeborová, L. Gibbs states and the set of solutions of random constraint satisfaction problems. Proc. Natl Acad. Sci. USA 104, 10318–10323 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  244. Aharonov, D., Arad, I. & Vidick, T. The quantum PCP conjecture. ACM SIGACT News 44, 47–79 (2013).

    Article  MathSciNet  Google Scholar 

  245. Bravyi, S., Chowdhury, A., Gosset, D. & Wocjan, P. Quantum Hamiltonian complexity in thermal equilibrium. Nat. Phys. 18, 1367–1370 (2022).

    Article  Google Scholar 

  246. Poulin, D. & Wocjan, P. Sampling from the thermal quantum Gibbs state and evaluating partition functions with a quantum computer. Phys. Rev. Lett. 103, 220502 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  247. Temme, K., Osborne, T. J., Vollbrecht, K. G., Poulin, D. & Verstraete, F. Quantum metropolis sampling. Nature 471, 87–90 (2011).

    Article  ADS  Google Scholar 

  248. Wu, J. & Hsieh, T. H. Variational thermal quantum simulation via thermofield double states. Phys. Rev. Lett. 123, 220502 (2019).

    Article  ADS  Google Scholar 

  249. Wang, Y., Li, G. & Wang, X. Variational quantum Gibbs state preparation with a truncated Taylor series. Phys. Rev. Appl. 16, 054035 (2021).

    Article  ADS  Google Scholar 

  250. Warren, A., Zhu, L., Mayhall, N. J., Barnes, E. & Economou, S. E. Adaptive variational algorithms for quantum Gibbs state preparation. Preprint at https://arxiv.org/abs/2203.12757 (2022).

  251. Wild, D. S., Sels, D., Pichler, H., Zanoci, C. & Lukin, M. D. Quantum sampling algorithms for near-term devices. Phys. Rev. Lett. 127, 100504 (2021).

    Article  ADS  Google Scholar 

  252. Zhang, D., Bosse, J. L. & Cubitt, T. Dissipative quantum Gibbs sampling. Preprint at https://arxiv.org/abs/2304.04526 (2023).

  253. Patti, T. L., Kossaifi, J., Anandkumar, A. & Yelin, S. F. Quantum Goemans–Williamson algorithm with the Hadamard test and approximate amplitude constraints. Quantum 7, 1057 (2023).

    Article  Google Scholar 

  254. Brandão, F. G. L., Kueng, R. & França, D. S. Faster quantum and classical SDP approximations for quadratic binary optimization. Quantum 6, 625 (2022).

    Article  Google Scholar 

  255. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    Article  ADS  Google Scholar 

  256. McClean, J. R., Romero, J., Babbush, R. & Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18, 023023 (2016).

    Article  ADS  Google Scholar 

  257. Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2021).

    Article  Google Scholar 

  258. Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  259. Bittel, L. & Kliesch, M. Training variational quantum algorithms is NP-hard. Phys. Rev. Lett. 127, 120502 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  260. Clader, B. D. et al. Quantum resources required to block-encode a matrix of classical data. IEEE Trans. Quantum Eng. 3, 1–23 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Eisert and M. Wilde for their valuable feedback and suggestions to further improve this paper. A. Ambainis acknowledges the support of the Latvian Quantum Initiative under European Union Recovery and Resilience Facility Project No. 2.3.1.1.i.0/1/22/I/CFLA/001 and the QuantERA II ERA-NET Cofund projects QOPT and HQCC. B.A. and S. Gupta acknowledge support from the US Defense Advanced Research Projects Agency (DARPA) Contract No. HR001120C0046. V.D. acknowledges the support of the Dutch Research Council (NWO/OCW), as part of the Quantum Software Consortium programme (Project No. 024.003.037) and of the Dutch National Growth Fund (NGF), as part of the Quantum Delta NL programme. S.H. was supported by NASA Academic Mission Services Contract No. NNA16BD14C and by DARPA under interagency agreement IAA 8839, Annex 114. T. Koch acknowledges support by the BMBF Research Campus MODAL (05M14ZAM and 05M20ZBM). S.L. was funded by Free State of Thuringia (Thüringer Aufbaubank) through project Quantum Hub Thüringen (2021 FGI 0047), by Bundesministerium für Wirtschaft und Energie, Germany through the project ‘EnerQuant’ (Project No. 03EI1025C) and by the European Union under Horizon Europe Programme. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Climate, Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them, Grant Agreement 101080086 — NeQST. J.M. acknowledges the support of the Czech Science Foundation (23-07947S). S.M., E.S. and B.C.B.S. were supported by the Hartree National Centre for Digital Innovation, a UK Government-funded collaboration between STFC and IBM. (IBM, the IBM logo and ibm.com are trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. The current list of IBM trademarks is available at https://www.ibm.com/legal/copytrade.) G.N. acknowledges support by ONR (N000142312585). P.R. acknowledges support by the National Research Foundation, Singapore. J.Y. was supported in part by the NSERC Discovery under Grant No. RGPIN-2018-04742, the NSERC project FoQaCiA under Grant No. ALLRP-569582-21 and the Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Research, Innovation and Science (Los Alamos unlimited release LA-UR-24-22124).

Author information

Authors and Affiliations

Authors

Contributions

This review was written as part of the Quantum Optimization Working Group initiated in July 2023 by IBM Quantum and its partners. The authors are listed alphabetically. All authors contributed to the discussions as part of the working group meetings and to writing the manuscript and Supplementary information. The discussions on and writing of the different sections were led by the following co-authors: A.A. and J.M. coordinated the writing of the section ‘Quantum advantage and complexity theory’ (in main text and Supplementary information). J.M. and S.W. oversaw Box 1 (and the corresponding section in Supplementary information) and the section ‘Problem classes and algorithms’ (in main text and Supplementary information). T. Koch and C.Z. coordinated sections ‘Benchmarks’ (in main text and Supplementary information), ‘Benchmarking problems’ (in Supplementary information) and ‘Demonstrations’ (in Supplementary information). S.W. led the writing of the section ‘The path towards quantum advantage’. D.J.E. and S.M. were in charge of the section ‘Execution on noisy hardware at scale’ (in Supplementary information). C.O’M., M.P., V.V. and C.Z. oversaw the section ‘Illustrative industry problems’. S.W. coordinated the overall project.

Corresponding author

Correspondence to Stefan Woerner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Review Physics thanks James Ostrowski, Leo Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, A., Ambainis, A., Augustino, B. et al. Challenges and opportunities in quantum optimization. Nat Rev Phys 6, 718–735 (2024). https://doi.org/10.1038/s42254-024-00770-9

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-024-00770-9

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics